Universidade Federal da Bahia
Instituto de Matematica e Estatistica

Programa de Pés-Graduacao em Ciéncia da Computacao

FEATURE INTERACTIONS IN HIGHLY
CONFIGURABLE SYSTEMS: A DYNAMIC
ANALYSIS APPROACH WITH VARXPLORER

Larissa Rocha Soares

TESE DE DOUTORADO

Salvador, Bahia — Brasil
21 de Fevereiro de 2019

LARISSA ROCHA SOARES

FEATURE INTERACTIONS IN HIGHLY CONFIGURABLE
SYSTEMS: A DYNAMIC ANALYSIS APPROACH WITH
VARXPLORER

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pos-Graduacao
em Ciéncia da Computacao da Uni-
versidade Federal da Bahia, como
requisito parcial para obtencao do
grau de Doutor em Ciéncia da Com-
putacao.

Orientador: Prof. Dr. Eduardo Santana de Almeida
Co-orientador: Prof. Dr. Christian Kastner e Prof. Dr. lvan do Carmo
Machado

Salvador, Bahia — Brasil
21 de Fevereiro de 2019

Ficha catalografica elaborada pelo Sistema Universitario de Bibliotecas (SIBI/UFBA),
com os dados fornecidos pelo(a) autor(a).

Rocha Soares, Larissa

Feature Interactions in Highly Configurable
Systems: a dynamic analysis approach with VarXplorer
/ Larissa Rocha Soares. -- Salvador, 2019.

195 f£. : il

Orientador: Eduardo Santana de Almeida.

Coorientador: Ivan do Carmo Machado.

Tese (Doutorado - Programa de P6s Graduagao em
Ciéncia da Computagdo) -- Universidade Federal da
Bahia, Instituto de Matematica e Estatistica, 2019.

1. Software Engineering. 2. Feature Interaction.
3. Configurable Software. 4. Variability-Aware
Execution. 5. Software Product Lines. I. Santana de
Almeida, Eduardo. II. do Carmo Machado, Ivan. III.
Titulo.

LARISSA ROCHA SOARES

“FEATURE INTERACTIONS IN HIGHLY CONFIGURABLE SYSTEMS: A DYNAMIC ANALYSIS
APPROACH WITH VARXPLORER”

Esta tese foi julgada adequada & obtengdo do titulo de Doutor
em Ciéncia da Computacgio e aprovada em sua forma final pelo

Programa de Pos-Graduagdo em Ciéncia da Computagdo da
UFBA.

Salvador, 21 de fevereiro de 2019.

< u /L2
Prof, Dr. Eduardo Santana de Almeida
Orien{t1 dorfPGCOMP

1A

Prof. Dr. Ivan ‘db Carmo Machado
Co-Orientador/PGCOMP

Prof.® Dr.2 Christina von Flach G. Chavez
Membro interno/PGCOMP

Chyistud v, ach G—Cﬂag/

L(,\.r“,:\-g E\‘\(_L\“-.. (’\/\-—-—M 2 ng_
Prof. Df. Rodrigo Ro¢ha Gomes e Souza
Membro interno/PGCOMP

Prof. Dr. Marcio ge Medeiros Ribeiro
Membro externo/Universidade Federal de Alagoas

. . ’ o
{(;Y J\—\.VQVL':\X AN AL O "-{“\

Prof. Dr. Eduardo Magno Lages Figueiredo
Membro externo/Universidade Federal de Minas Gerais

Gostaria de dedicar esta tese ao senhor Jorge José Araujo
Rocha, meu tio e padrinho que ha 2 anos nos deixou de
forma inesperada e foi morar ao lado do Pai. Obrigada por
tanto amor e carinho. Um dia estaremos juntos de novo.

ACKNOWLEDGEMENTS

During the PhD., I had the amazing opportunity of being received by professor Christian
Késtner at Carnegie Mellon University (CMU), Pittsburgh, US. I do not have enough
words to thank Christian for all the support and fantastic talks during the year I spent
at Pittsburgh. CMU was a watershed in my life. I'm not the same person as before. I
learned so much. I've matured a lot, both professionally and as a person. The way I use
to research has changed. My way of thinking has also changed and I am very grateful for
all of it.

I also would like to thank Christian for introducing me Sarah Nadi, who have been
working with us since I got at the US. Thank you, Sarah, for your generosity, kindness and
partnership. Still, I would like to thank Christian’s research group, specially the one who
became my friend, Jens Meinicke, for the infinite talks, support during hard times, laugh
and friendship. Last, and not least, I would like to thank all my friends in Pittsburgh.
Without them, my life would have been much more lonely and sad. They were my family
for 1 year and have brought companionship and joy into my life. Most of the happiest
moments I had, I had because of you. Thank you, girls.

Agora em portugués. Querido Deus, obrigada por tudo que o Senhor tem feito por
mim e pelos meus. O Teu amor cobre as minhas fraquezas e a Tua fidelidade é maior do
que todos os obstaculos na minha vida. Mais uma vez, obrigada.

A vida de ninguém é facil e muito menos parecida com o que é postado nas redes socias.
Nem tudo é festa. Coincidéncia ou nao, os anos do doutorado foram os mais dificeis
da minha vida, I mean, vida pessoal. Mas, tudo passa. Eu precisava seguir em frente,
e valeu muito a pena. Vieram momentos inesquecivies, muito felizes, journals, papers,
conferéncias internacionais, pessoas especiais e lugares maravilhosos. Porém, sozinha eu
nao conseguiria. Nunca.

Eu gostaria de agradecer ao meu orientador no Brasil, o professor Eduardo Almeida.
Obrigada por todo suporte durante esses anos, por acreditar e confiar em mim. Gostaria
de agradecer também ao professor Ivan Machado. Muito obrigada por todas as nossas
conversas, por ser sempre tao gentil e pela disponibilidade. Sempre apds as nossas reunioes,
eu me sentia muito melhor. Obrigada de verdade. Fu também preciso falar do melhor
grupo de pesquisa e laboratério do mundo, RiSE Labs e Lab INES! A companhia diaria,
o ambiente descontraido, as risadas e todos os momentos com vocés serviram como
combustivel para que eu pudesse seguir em frente. Magno, Gau, Leo, Iuri, Michele,
Jonatas, Paulo, Renata, Tassio, Alberto, Crescéncio. Obrigada.

Um muito obrigada também aos meus pais, que mesmo sem entender direito o que
eu fazia, estavam sempre l4 me dando todo o suporte necesssario e todo o amor desse
mundo. Tudo que fiz e fago é por voceés e pra vocés, sempre. Preciso também agradecer

Vil

viii ACKNOWLEDGEMENTS

ao meu noivo e melhor amigo, Igor, e agradecer aos meus sogros por estarem sempre ao
meu lado. Obrigada! Em especial, obrigada, Pig, nao s6 por todo amor e carinho, mas
também por toda ajuda no doutorado em si. Bug de programacgao, a quem eu recorreria?
E quem leria meus artigos? E pra cada artigo, ele lia todas as versoes vérias e varias vezes.
Discutia comigo, me dava ideias e estava sempre 14, a disposi¢ao. Nao tenho palavras para
te agradecer. Eu te amo muito.

Finalmente, preciso agradecer ao meu irmao, sobrinhos (Davi e Bia), meus primos,
tios, tias e amigos. Obrigada por acreditarem em mim quando nem eu mesma acreditava.
Amo muito voces.

Livros ndo mudam o mundo, quem muda o mundo sdo as pessoas. Os
livros so mudam as pessoas.

—MARIO QUINTANA

RESUMO

Sistemas altamente configuraveis (também conhecidos como linhas de produtos de soft-
ware) fornecem oportunidades significativas de reuso, uma vez que eles adaptam vari-
antes do sistema com base em um conjunto de features. Essas features podem interagir
de formas indesejadas, resultando em falhas. Além disso, a maioria das interagoes nao é
facilmente detectavel, j4 que especificacoes de interacoes entre features geralmente nao
sao definidas, especificadas e documentadas em um projeto de software.O problema da
interacao entre features tem sido um assunto desafiador por anos. Apesar da existéncia
de estudos que mapeiam essas interagoes, ainda nao ha muitos trabalhos sobre a com-
preensao de estratégias, atividades, artefatos e lacunas de pesquisa para interagoes em
sistemas configuraveis. Desta forma, esta tese prové inicialmente um mapeamento sis-
tematico de estudos por meio da andlise de 40 trabalhos, os quais foram classificados
de acordo com os estégios do ciclo de vida de desenvolvimento e a solucao de interacao
apresentada (detecgao ou resolugao de interagoes).Andlises recentes tém focado na de-
teccao de erros de interacao de features a partir de especificagoes globais, ou seja, es-
pecificagoes que todas as configuracoes de um sistema configuravel precisam cumprir. No
entanto, especificacoes no nivel de features ou interacoes sao geralmente negligenciadas
e raramente documentadas. Neste cenario, muitas abordagens nao conseguem detectar
todos os problemas de comportamento do sistema, especialmente erros nao cobertos por
especificagoes globais e erros que nao resultam em uma falha ou outro comportamento
facilmente observavel. Ao invés de partir de um conjunto de especificacbes como a maioria
das abordagens, propomos inspecionar as interacoes de features a medida que sao detec-
tadas e classifica-las gradativamente como benignas ou probleméticas. Nossa abordagem
e ferramenta, VarXplorer, fornece um processo de inspecao que ajuda os desenvolvedores
a distinguir as interagoes intencionais das interagoes que podem levar a bugs. Usamos
a execuc¢ao variacional para observar interacoes internas ao fluxo de controle e fluxo de
dados de sistemas altamente configuraveis e propomos graficos de interacao de features
como uma representacao concisa de todas as interagoes entre pares de features.Por fim,
realizamos dois estudos empiricos para avaliar como o processo de inspecao e os graficos
de interacao de features podem ajudar os desenvolvedores a identificar e entender in-
teracoes suspeitas. O primeiro é um experimento controlado que investiga e compara a
capacidade dos desenvolvedores ao identificar interagoes suspeitas com e sem o VarX-
plorer. O segundo foca no processo iterativo de execucao de casos de teste e como ele
proporciona uma anélise de interacoes mais rapida e objetiva.

Palavras-chave: Interagao entre features; Software configurdvel; Especificacao de in-
teracoes entre features; Execucao ciente de variabilidade;

x1

ABSTRACT

Highly configurable systems (as known as software product lines) provide significant reuse
opportunities by tailoring system variants based on a set of features. Those features can
interact in undesired ways which may result in faults. However, most interactions are not
easily detectable as specifications of feature interactions are usually missing. The feature
interaction problem has been a challenging subject for years. Despite the existence of
studies to map out available evidence on feature interaction for single systems develop-
ment, there is a lack of understanding on common strategies, activities, artifacts and
research gaps for interactions in configurable systems. Thus, this thesis initially gathered
systematic mapping study evidence by analyzing 40 feature interaction primary studies,
which were classified according to development lifecycle stages and the feature interac-
tion solution presented, either detection, resolution or general analysis. Recent analyses
focused on detecting feature interaction bugs from global specifications, i.e., specifica-
tions that all configurations of a configurable system need to fulfill, such as requiring
that each configuration does not crash. However, specifications at the feature level are
usually missing and, then, many approaches may not detect all incorrect system behav-
ior, specially bugs not covered by global specifications and bugs that do not result in a
crash or other easily observable behavior. Instead of starting from a set of specifications
like most approaches, we propose to inspect feature interactions as they are detected and
incrementally classify them as benign or problematic. We aim to provide an inspection
process that helps developers to distinguish intended interactions from interactions that
may lead to bugs. We use variational execution to observe internal interactions on control
and data flow of highly configurable systems. To help developers understand these inter-
actions, we propose feature-interaction graphs as a concise representation of all pairwise
interactions. We provide two analyses that provide additional details about interactions,
namely suppress and require interactions. Our approach and tool, VarXplorer, provide
an iterative analysis of feature interactions allowing developers to focus on suspicious
cases. Finally, we perform two empirical studies to evaluate the inspection process and
how feature interaction graphs can help users identify suspicious interactions. The first
study is a controlled experiment to investigate and compare the ability of users when
identifying suspicious interactions with and without VarXplorer, in a setting composed
of different systems, performing different tasks. The second study focuses on the iterative
process of test cases execution and how it can be used for a faster and more objective
feature interaction analysis.

Keywords: Feature Interaction; Configurable Software; Feature Interaction Specifica-
tion; Variability-Aware Execution;

xiil

CONTENTS

List of Figures xviii
List of Tables XX
List of Acronyms xxi

I Overview

Chapter 1—Introduction 3
1.1 Motivation oL 4
1.2 Objectives L 4
1.2.1 Presenting the state-of-the-art on feature interactions 4

1.2.2 Supporting developers on the detection of suspicious feature inter-
actions with VarXplorer)
1.3 Research Questions 5
1.4 Research Design 6
1.5 Contributions 8
1.6 Out of Scope 9
1.7 Organization of the Thesis 10

Il Background

Chapter 2—Main Concepts and Foundations 13
2.1 Software Product Lines (SPL) 13
2.2 Feature-oriented Software Development (FOSD) 14
2.3 Feature Interaction Lo 14
2.3.1 Feature interaction in SPL engineering 15
2.3.2 Classification 16
2.4 Chapter Summary 17

XV

Xvi

CONTENTS

Chapter 3—Systematic Mapping Study

3.1 Mapping Study Process .
Research Questions

3.1.1
3.1.2
3.1.3
3.2 Results
3.2.1
3.2.2

3.2.3

3.24
3.2.5
3.2.6
3.3 Discuss
3.3.1

3.3.3

Search Strategy .
Update.

Classification Scheme
Feature Interaction Solutions
3.2.2.1 FEarly Detection.
3.2.2.2 Source Code Detection (Dsc).
3.2.2.3 Early Resolution (Re).
3.2.2.4 Source Code Resolution (Rsc).
3.2.2.5 Early Analysis (Ae) and Source Code Analysis (Asc). . .

Software lifecycle
3.2.3.1 Artifacts.

Feature interaction types

Domains

Empirical assessment methods

ion

Feature interaction solutions
3.3.2 Tools and validation

Domains

3.4 Threats to validity . . .
3.5 Addressed gap and directions for further research
3.6 Chapter Summary . . .

Il A dynamic analysis approach with VarXplorer

Chapter 4—On the Detection of Feature Interactions

4.1 Why should we detect feature interactions?
4.2 Running example: WordPress
4.3 Feature-based specifications and Global specifications
4.4 Strategies to detect interactions
4.5 Variational execution . .

4.6 VarexJ

4.7 Chapter Summary . . .

Chapter 5—Va

rXplorer

5.1 Tterative analysis of feature interactions: Overview
5.2 Interaction detection . .

0.2.1

Pairwise Detection

19

19
20
22
25
25
26
26
28
29
29
30
31
31
32
33
34
35
36
36
39
39
41
42
43

47

47
48
48
30
o1
23
o4

CONTENTS xXvii

2.3
5.4
9.9
5.6

5.2.2 Relationships Analysis 0L 60
Interaction specification language 64
User Inspection 65
Plug-in implementation L oL 66
Chapter Summary 69

IV Empirical studies

Chapter 6—Controlled Experiment: Understanding Feature Interactions with the

Graph 73
6.1 Experimental Design oL 73
6.1.1 Research Questions (RQs) 74
6.1.2 Experiment Overview 74
6.1.3 Pilot Study 75
6.1.4 Participants 75
6.1.5 Experimental Material and Tasks 76
6.1.6 Design 7
6.1.7 Procedure and Execution L. 79
6.1.8 Data Analysis 80
6.2 Results and Discussion Lo oL 80
6.2.1 RQ1: Does VarXplorer improve the performance of identifying sus-
picious interactions compared to Varviz? 81
6.2.2 RQ2: How does the interaction graph presented by VarXplorer help
understand the suspicious interactions in a program? 82
6.3 Threats to Validity oo 84
6.4 Related Work 86
6.5 Chapter Summary 87
Chapter 7—Exploratory study: an analysis on VarXplorer iterations 89
7.1 Research Question (RQ) o 90
7.2 Subject System 91
7.2.1 Features 91
7.3 Experimental Study Design 92
7.3.1 Study overview 92
7.3.2 Design 93
7.3.3 Procedure 94
74 Results. 96
7.4.1 Analysis of Order Influence 101
7.5 Lessons Learnedo 103
7.6 Threats to Validity 105
7.7 Chapter Summary 106

Xviii CONTENTS

V Conclusions

Chapter 8—Concluding Remarks and Future Work 109
8.1 Thesis Contributions 109
8.2 Limitations and Directions for Future Work 111

8.2.1 Potential Future Work for the Approach 111
8.2.2 Other Directions for Future Work from the Systematic Mapping . 112

Appendix A—Systematic mapping: support material 127
A.1 Summary of Studieso 127
A.2 List of the newest studies, collected after the update. 130

Appendix B—Controlled Experiment: data and support material 131
B.1 Online pre-survey (background form) 131
B.2 Evaluation: Instructions for participants 134
B.3 Evaluation: The time measured for the participants 151
B.4 Evaluation: R Script oo 152

Appendix C—Exploratory Study: data and support material 155
C.1 All specifications created during the exploratory study 155

C.2 Test suite graphs 162

1.1

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9
3.10
3.11

4.1
4.2

5.1

0.2

9.3

LIST OF FIGURES

Schematic overview of the thesis structure. 7
The systematic mapping process, adapted from Petersen et al. [1] 20
Research Questions of the systematic mapping study 21
Search and selection process 23
Percentage of papers collected in each Digital Library by using our search

String L 24
Number of studies by publication year 26
Lifecyle phases per approach. DA: Domain Analysis; DD: Domain Design

and Specification; DI: Domain Implementation; and PC: Product Config-
uration and Generation L 32
Number of approaches per feature interaction type. De: early detection;
Dsc: source code detection; Re: early resolution; Rsc: source code resolu-
tion; Ae: early analysis: Asc: source code analysis 34
Number of studies by application domain. File System: [2, 3]; Minepump:
[3, 4]; Payment: [5, 3|; List structure: [6, 3]; Embedded medical device:
[7, 8]; Antivirus: [9, 10]; Elevator system: [11, 3, 4]; Games: [12, 13, 10]; File
compressor: [13, 4, 10]; Network: [2, 3, 10, 14]; Smart home: [15, 16, 17, 18];
Automotive: [6, 19, 20, 11]; Graph: [2, 3, 21, 4, 12]; Email: [22, 23, 3, 4, 10];
Database: [24, 25, 26, 3, 12, 10]; Phone System and Telecommunications:

(27,28, 11, 19,29, 30, 2]. 35
Empirical methods as named by the studies 36
Domains over time. 40
Approaches, Domains, and FOSD phases 41
Example of two Wordpress configurations. 50

WordPress example being executed with a traditional approach (recording)
versus the variational execution (sharing). This code focus on two options:
smiley and weather (the number on the elements indicate the line number). 52

Overview of our approach to iteratively and automatically inspect feature

interactions with VarXplorer L. 57
Variational trace of the WordPress example showing interactions among
features. S: Smiley, W: Weather, F: Fahrenheit, T: Statistics. 58

Creation process of the WordPress feature interaction graph, generated by
VarXplorer. Solid black line: interaction. Dashed line: data flow interaction.
Dashed line around the feature: features that has no effect in the execution.
Red arrow: suppress relationship. Green arrow: require relationship. . . . 59

XIiX

XX

5.4
2.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

LIST OF FIGURES

Example of interaction specification to WordPress. 65
VarXPlorer screenshot of the Wordpress graph. 66
VarXplorer window to confirm the use of previous specifications. 67
Annotated feature variable in JAVA. L. 67
VarXplorer packages and LOC 68
Latin Square to our treatments 78
Description of the setup for each group. 79
Time results for the tools 80
Time results grouping tools and systems. E: Elevator; X: VarXplorer; Z:

Varviz; T: Telephone 81
Time spent on performing the tasks to Varviz and VarXplorer. 85
The same code excerpt annotated for compile time and runtime. 92
Feature model of the RiSE Event SPL. 93
Database used for the tests. L. 95
Flow chart of the process to analyze interactions of a test case. 97
Graphs generated for the analysisof T1. 99
Specifications automatically created after the analysis of T1. 99
Complete graph of T10. 102

Reduced graph of T10. 102

1.1

3.1
3.2
3.3
3.4
3.5
3.6

6.1

7.1
7.2
7.3
7.4
7.5

Al
Al
Al
A2

B.1

LIST OF TABLES

Publications during the Ph.D. research. 9
Digital Libraries 22
Search Stringo 22
Studies’ Venues 27
Primary studies 28
Software artifactso 33
Papers and tools. C: category; A: assessment method. 38
Participants 76
Experiment Designo 94
Details of the Test Case Suite 96
Interactions type, variables and time of analysis 98
Test Cases: Problems identified and percentage of cleaning 100
Three random samples of the test suite 104
Primary studies 127
Primary studies 128
Primary studies 129
Continuation of the Primary studies 130
The time measured for the participants in the evaluation 152

xx1

ASE

LIST OF ACRONYMS

Software Product Lines

Feature-Oriented Software Development

Domain analysis

Domain design and specification

Domain implementation

Product configuration and generation

Early Detection

Source Code Detection

Early Resolution

Source Code Resolution

Early Analysis

Source Code Analysis

Feature Interactions in Telecommunications and Software Systems
International Conference on Software Engineering
International Systems and Software Product Line Conference

International Conference on Automated Software Engineering

ESEC/FSE European Software Engineering Conference and Symposium on the

VaMoS

GPCE

OOPSLA

Foundations of Software Engineering

International Workshop on Variability Modelling of Software-Intensive
Systems

International Conference on Generative Programming: Concepts
Experiences

International Conference on Object- Oriented Programming, Systems,
Languages, and Applications

xxiii

XX1V LIST OF ACRONYMS

FOSD Workshop International Workshop on Feature-Oriented Software Development

BDD Binary Decision Diagram

PART |

OVERVIEW

Chapter

INTRODUCTION

Highly-configurable systems, such as software product lines, provide significant reuse
opportunities by tailoring system variants based on a set of features (aka. configuration
options) [31]. Such systems may be composed of thousands of features. For example, the
Eclipse IDE! has more than 1,600 plugins [31] and the Linux kernel?® has more than 15,000
configuration options [32, 33]. This large set of options may be combined in different ways,
and developers must guarantee that all valid combinations work properly. A common
problem in highly configurable systems is that a feature interaction between two or more
features may result in a surprising behavior that is not easily deduced from the analysis
of each feature separately [34]. Even if a system behaves as expected most of the time, it
may exhibit unexpected and unwanted interactions under specific feature combinations.
The chapter consists of eight sections:

Section 1.1 introduces and motivates this study;
Section 1.2 presents and discusses the objectives of the thesis;
Section 1.3 describes our research questions;

Section 1.4 presents the research design, which involves background, dynamic approach,
and empirical studies;

Section 1.5 presents the main contributions of this work;
Section 1.6 defines the topics out of the scope; and

Section 1.7 finally presents the organization of the thesis.

Lihttps:/ /www.eclipse.org/,
2ihttps://www.kernel.org/;,

https://www.eclipse.org/
https://www.kernel.org/

4 INTRODUCTION

1.1 MOTIVATION

A software product can be seen as a configuration of features that need to be composed
together without violating their particular requirements. On the one hand, it is relatively
simple to specify the behavior of a feature in isolation. On the other hand, specifying and
detecting interactions among features may not be a straightforward task. Henceforth, we
use the term feature to refer to any configuration option, module, or component in a
configurable system.

Determining the influence of feature interactions on the system’s behavior has been a
challenging subject for decades [35]. Anticipating and specifying all likely consequences
of each possible feature interaction might not be possible, mainly due to the facts that
(i) the number of configurations and feature interactions grows exponentially in relation
to the number of features [36]; (ii) the behavior of some interactions may be unknown
and unpredictable in advance [34]; and (iii) human effort is required, but people usually
do not like writing specifications.

To address those challenges, recent analyses focus on detecting feature interaction
bugs from global specifications, i.e., specifications that all configurations of a configurable
system needs to fulfill, such as requiring that each configuration does not crash [37].
Usually, these approaches check global specifications based on systematic sampling [38,
39, 40|, combinatorial interaction testing [41, 42, 43], model checking [44, 45, 46, 47, 48],
or variational execution [49, 50, 51, 52].

Additionally, the problem is that features may interact in many ways, for example,
by triggering events that enable other features, having control over the same variables,
and enforcing conditions that suppress other features [53]. However, since specifications
at the feature level are usually missing, the mentioned approaches may not detect all
incorrect system behavior, especially bugs not covered by global specifications and bugs
that do not result in a crash or other easily observable behavior.

Thus, it is hard to reason about interactions without feature specifications. When
statically detected in the source code, (i) predicted interaction may never appear during
system execution; (ii) many feature interactions can be observed only at runtime; and (iii)
it is difficult to automatically determine if an unexpected interaction is either benign or
represent a real problem. Although current dynamic approaches [49, 50, 51, 52] overcome
drawbacks of static analysis by analyzing systems at runtime, identifying problematic
interactions still remains challenging, especially when no feature specification is provided.

1.2 OBJECTIVES

In this work, we have two main objectives, as follows:

1.2.1 Presenting the state-of-the-art on feature interactions

We investigate highly configurable systems to leverage how do the existing approaches
deal with feature interactions in the community. Particularly, we aim to identify common
practices and research trends. To accomplish such a goal, we carried out a systematic
mapping study to investigate state-of-the-art approaches and identify research topics

1.3 RESEARCH QUESTIONS 5)

that researchers and practitioners could address. The systematic mapping study included
a set of seven research questions, in which the 35 studies found are mainly classified
regarding the feature interaction solution presented, i.e., either detection, resolution, or
general analysis of interactions.

1.2.2 Supporting developers on the detection of suspicious feature interactions
with VarXplorer

Features are frequently combined to cooperate to an intended behavior (expected interac-
tions). However, most interactions cannot be predicted upfront. Thus, instead of upfront
specifications as most of the approaches do, we propose to inspect feature interactions
as they are detected and incrementally classify them as either benign or problematic.
We aim to provide an inspection process that helps developers to distinguish intended
interactions from unintended interactions. This is an automated, tool supported, process.
VarXplorer is an approach automated by an Eclipse plug-in. It was developed to analyze
control and data flow interactions, besides presenting features relationships, such as the
suppression of one feature by another.

1.3 RESEARCH QUESTIONS

On the basis of such defined goals, we established the following research questions that
drive this investigation:

e What is the state-of-the-art on feature interaction research for product
lines?
During the last decade, research strategies on Software Product Lines (SPL) have
been published in the literature regarding detection [12, 13], resolution [54], and
analysis [14, 55] of feature interaction. Despite the existence of studies to map out
available evidence on feature interaction for single systems development [56], it
is still missing a study to SPL. We have conducted a systematic mapping study
to investigate strategies, activities, artifacts and research gaps for interactions in
software product lines.

e How can we detect unexpected feature interactions and classify them as
either benign or problematic in a highly configurable system?
There exists a lot of work aiming to detect faults caused by feature interactions,
as well as techniques to resolve them. However, detecting unexpected feature in-
teractions that do not lead to a crash (at least not for the given test cases), but
that cause faulty behavior, remains an open challenge. In our work, we aim to ad-
dress the challenge of helping developers to dynamically identify potentially faulty
feature interactions without counting on upfront specifications. We propose an ap-
proach that provide an iterative and incremental analysis of interactions and a tool
to detect the interactions and relationships between features.

e How to evaluate such approach?
To achieve a comprehensive research rigor and relevance, our tool should be empir-

6 INTRODUCTION

ically evaluated and results have to be reported to stakeholders, detailing benefits
and drawbacks of the approach. Thus, we conducted two complementary studies.
First, we performed a controlled experiment to measure the effort to identify a buggy
interaction compared to the state-of-the-art tool. We also performed a qualitative
analysis based on video and audio recordings, and post-treatment interviews. In the
second study, we explored the iterative approach and specifications. We analyzed
whether running sequential test cases and using feature-interaction specifications
can make it easier to identify suspicious interactions.

1.4 RESEARCH DESIGN

This section describes the research design employed in this work. We split this investiga-
tion in three main parts: Background; Dynamic approach; and Empirical studies. Figure
1.1 shows a diagram with these macro parts and an overview of the sub-activities, which
we detail next.

Background. The first part presents an overview of the basic concepts that guide
this thesis, such as SPL, feature, feature-oriented software development, and feature in-
teractions. In addition, it also encompasses the literature review on feature interaction in
product lines.

We first define SPL, main concepts, and objectives. Then, we present key aspects
of the feature-oriented software development, which has been widely used in the SPL
engineering. Finally, we discuss feature interaction in SPL engineering. We bring the
different ways that an interaction is defined, besides presenting the feature interaction
classification. Such concepts provide the ground for us to devise our research questions
and to narrow down the possibilities to be included in this investigation.

In addition, we perform a systematic mapping study to serve as an in-depth analysis of
the current existing knowledge on the comprehension of feature interactions. The mapping
classifies the studies according to their proposed solutions, feature interactions types,
software lifecycle, software domains, and empirical assessment methods. We also present
the studies in 3 different categories: detection, resolution, and general analysis of feature
interactions.

Dynamic approach on feature interactions. The second part comprises the pro-
posal of the dynamic approach to detect interactions. As a means of better understanding
our proposed approach (VarXplorer), we first discuss the strategies to detect interactions,
focusing on the dynamic analysis. To make it easier to explain suspicious interactions
and why we should detect them, we also present a running example. Then, we show
the preliminary steps of our approach, such as the test case execution strategy and the
variability-aware interpreter used to run the systems.

Next, we present details of VarXplorer, which is a dynamic iterative and interactive
approach to detect suspicious interactions. It consists of an approach and an Eclipse
plug-in that implements the proposed approach. VarXplorer provides information on how
features impact the control and data flow of the program. Our tool supports developers
with a feature-interaction graph that visualizes this information, mainly showing suppress
and require relations between features. Thus, it is shown how we detect interactions and

1.4 RESEARCH DESIGN 7

Chapter 1

Introduction

Background

W Concepts interaction|

ge on the foundations of the thesis

Chapter 3
Mapping
Study

Classification

Solutions Gaps
scheme P

In-depth analysis towards the comprehension of feature interactions

Approach
————————
i ChaPte'f 4 Running Variational Variational | !
i Dynamic example execution interpreter '
' ELENTS i
il Principles of our dynamic analysis on feature interactions i
Pairwi Interaction
3 Chapter 5 airwise elationship | |Specification| !
Ml VarXplorer detection analysis language :
Empirical studies
Chapter 6
Stud . -
Controlled v Results Discussion

Experiment
Understanding interactions

__

——

i Chapter 7
i Exploratory . Discussion

interactions

Figure 1.1: Schematic overview of the thesis structure.

8 INTRODUCTION

relationships between features.

Empirical studies. The third part encompasses two empirical evaluations: (i) a study
on feature-interaction graphs to determine if they do help developers identify problematic
interactions; and (i) a study to understanding how the iterative process and feature-
interaction specifications may support developers during the testing process.

We conduct a controlled experiment with 24 participants from both academia and
industry backgrounds, and measure the effort to identify a buggy interaction based on
the information provided by the feature-interaction graph. We also perform an in-depth
qualitative analysis based on video and audio recordings, and post-treatment interviews.
Then, we carry out a second study to analyze whether the iterative process on individual
tests proposed by VarXplorer is able to reduce the complexity of identifying interactions.

1.5 CONTRIBUTIONS

In accordance with our goals, the main contributions of this work are related to our
feature interaction approach and they are listed in the following:

1. a systematic mapping study to investigate the state-of-the-art in feature interac-
tions. The mapping study is published in the Information and Software Technology
journal;

2. a set of gaps on feature interaction in SPL area, which we leverage and discussed
in the mapping study;

3. a way to dynamically detect interactions based on both control and data flow;

4. two classes of interactions (relationships between features), namely suppress and re-
quire interactions. Those classes provide details on how features interact to support
developers in identifying unintended interactions;

5. feature-interaction graphs, a concise visual representation of feature interactions
identified at runtime using variational execution;

6. a feature interaction specification language to allow and forbid interactions on data
and control flow;

7. an iterative and interactive approach to refine feature-interaction graphs using fea-
ture interaction specifications;

8. an Eclipse plug-in to generate feature interaction specifications and remove interac-
tions that do not represent a bug, allowing the developer to focus only on suspicious
cases;

9. a controlled experiment showing that feature-interaction graphs improve the effi-
ciency of understanding feature interactions compared to the state-of-the-art;

10. an in-depth qualitative analysis showing advantages of the graph components to-
wards the detection of suspicious interactions;

1.6 OUT OF SCOPE

11. an exploratory study presenting how the VarXplorer iterative process improves and
facilitates the identification of suspicious interactions.

Table 1.1 shows a list of the publications related to the thesis topic in order to get an

overview of our contributions so far.

Table 1.1: Publications during the Ph.D. research.

Paper Title Venue Year
Thesis related publications
1. Feature interaction in software product line engineering: A sys- Infor. and Software 2018
tematic mapping study [57] Technology Journal
2. VarXplorer: Lightweight Process for Dynamic Analysis of Feature ~VaMoS 2018
Interactions [58]
3. VarXplorer: reasoning about feature interactions [59] ICSE Student Competi- 2018
tion
4. Exploring Feature Interactions without Specifications: A Con- GPCE 2018
trolled Experiment [60]
5. Feature interactions in highly configurable systems, an approach TOSEM [under work] -
and two studies
Other publications
6. Non-Functional Properties in Software Product Lines: A Reuse ~VaMoS 2015
Approach [61]
7. Analysis of Non-functional Properties in Software Product Lines: EUROMICRO/SEAA 2014
A Systematic Review [62]
8. SPLICE: A Lightweight Software Product Line Development Pro- SBCARS 2014

cess for Small and Medium Size Projects [63]

1.6 OUT OF SCOPE

It is rather important to define the scope of this thesis. Given all the described before,

we consider as out of the scope the following topics:

o variability-aware interpreter: we extended an existing interpreter that is well-recognized
by the community to execute the system test cases. Since we rely on tooling previ-
ously developed, which is open source and published in different venues [50, 64, 65],
we assume it is reasonably well developed.

o test case suite: there is a number of studies discussing on how to get the best
coverage for a test case suite. We do not address this issue in our investigation in
order to reduce the scope. We assume that we already have the test cases for the
systems used on the running example and evaluation systems;

e static analysis of feature interactions: dynamic analysis has many advantages com-
pared to static analysis, such as: detection of real interactions, reduction of false

10 INTRODUCTION

positives, and identification of bugs hardly detected on source code. Although we
understand that static approaches have their benefits as well, we chose to focus on
the dynamic strategy.

1.7 ORGANIZATION OF THE THESIS

This thesis is structured in five parts and two appendices. Figure 1.1 shows a schematic
overview of the thesis structure. Apart from the Introduction Part, the remainder can be
outlined in the following way:

Part IT - Background. This part provides background concepts on the topics involved
in this investigation, as discussed in the Section 1.4. In addition to the basic con-
cepts, it also presents a mapping study on feature interactions for SPL.

Chapter 2 (Concepts) Basic concepts regarding the topic of this thesis.
Chapter 3 (Systematic Mapping Study) We present a literature review on

feature interactions.

Part III - Dynamic approach on feature interactions. This part motivates and de-
fine in detail the novel strategy to handle feature interaction in SPL engineering.
We elaborate on how it was conceived and present how we support developers on
the detection of suspicious interactions.

Chapter 4 (On the detection of feature interactions) Definition and discus-
sion of the main concepts used in our approach.
Chapter 5 (VarXplorer) Description of the details on how VarXplorer detects

interactions, besides presenting the interactive and iterative approach.

Part IV - Empirical studies. This part presents two empirical studies on the gath-
ering evidence regarding the usefulness of VarXplorer, interaction graphs, iterative
process, and feature-interaction specification, as a strategy to identify feature in-
teraction bugs in programs.

Chapter 6 (Controlled Experiment) Planning of the experiment and results.
Chapter 7 (Exploratory Study) Planning of the exploratory study and results.

Part V - Conclusions. Finally, this part concludes the thesis document.

Chapter 8 (Conclusions) Thesis summary, concluding remarks and future work.

PART Il

BACKGROUND

Chapter

MAIN CONCEPTS AND FOUNDATIONS

SPL engineering defines a set of systems that share common features and artifacts to
achieve high productivity, quality, market agility, low time to market, and cost [66]. An
SPL product is derived from a configuration of features which need to be compounded
together without violating their particular specifications. While it is easy to identify the
behavior of a feature in isolation, specifying and resolving interactions among features
may not be a straightforward task. The feature interaction problem has been a challenging
subject for decades.

The goal of this chapter is to present the basic concepts in the context of this thesis.
The chapter consists of four main sections:

Section 2.1 introduces Software Product Lines;

Section 2.2 presents the basics of Feature-Oriented Software Development, as a main-
stream strategy to deliver Software Product Lines;

Section 2.3 presents the definition of feature interactions in SPL engineering and how
it is usually classified;

Section 2.4 concludes this chapter.

Since the topics of the sections are broad, along this chapter we provide background
information rather than introducing all the existing literature.

2.1 SOFTWARE PRODUCT LINES (SPL)

A feature describes a unit of functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential configuration option [67]. Products
of highly configurable systems (respectively, SPL) can be composed by selecting a set of
features. Then, SPL can be described as a family of systems created and developed from
features. SPL engineering explores the commonalities and manages variabilities among

13

14 MAIN CONCEPTS AND FOUNDATIONS

related products, in which it is possible to establish a common platform on top of software
assets that can be systematically reused and assembled into different products.

Based on the selection of features, software engineers can configure distinct products
satisfying a range of common and variable features, which comprise both functional and
non-functional properties [68]. In SPL engineering, features can be organized in a feature
model, a graphical representation including variability relations, features constraints and
dependencies. Features in a feature model are usually classified as [69]: (i) mandatory, a
feature that must be selected whenever its parent feature is selected; (ii) optional feature,
a feature that may or may not be selected; (iii) OR feature group, when one or more
features in the group must be selected; and (iv) XOR (alternative) feature group, when
one and only one of the features in the group must be selected.

There are several paradigms to develop an SPL, such as: Feature-Oriented Software
Development (FOSD), aspect-oriented software development, and component based soft-
ware engineering [70]. Among these, FOSD is an emerging paradigm that enables cus-
tomization, and synthesis of software products [70]. The FOSD paradigm has been used in
the SPL development in order to take advantage of the systematic application of features
in all phases of software lifecycle.

2.2 FEATURE-ORIENTED SOFTWARE DEVELOPMENT (FOSD)

The software development process based on FOSD relies on the concept of a feature to
analyze, design, as well as to implement software systems. The FOSD paradigm corre-
sponds to a collection of methods, tools, languages and formalisms connected by features.
Basically, FOSD involves four phases: (i) Domain analysis (FDA), (ii) Domain design and
specification (FDD), (iii) Domain implementation (FDI), and (iv) Product configuration
and generation (FPC) [70]. Since the feature concept is spread through all those phases,
approaches for reducing feature interactions problems are also discussed over them.

Feature modeling is the main activity of the FDA phase, whose objective is to iden-
tify variabilities and commonalities in a given domain. The architecture of an SPL is
designed in the FDD phase, through either formal or informal specifications and model-
ing languages. In FDI, features are developed to meet its specifications. Finally, the FPC
phase is responsible for generating a software product according to user’s requirements.
FOSD encourages an automatic software product generation based on tools that support
a valid features selection. There are several commercial and academic tools available to
assist software engineers in finding a valid selection and support a product development,
such as: Gears [71], pure::variants [72], FeatureIDE [73], and EASy-Producer [74].

2.3 FEATURE INTERACTION

Feature interaction has been widely discussed in the telecommunications domain. During
the 80’s [56], many solutions covering different lifecycle stages emerged in that community.
A widespread feature interaction example is related to the features call waiting and
call forwarding of a telephone system. When both are present at the same time, the
system behavior is ill-defined. Call waiting allows managing two interleaved calls — one

2.3 FEATURE INTERACTION 15

is suspended while another one is being answered. Call forwarding when busy requires to
specify a phone number to forward new calls that arrive when the phone is busy. If these
features are used together, and a new call is received when the phone is busy, it does not
know how to proceed: it can either forward or suspend the new call. Feature interaction
can cause unexpected situations, and may even go against the system specification [75].

Although the feature interaction problem came to light in the telecommunications
domain, it has been recognized as a general problem in different fields, as follows: in
software engineering, to predict, detect and resolve interactions [76]; cyber-physical sys-
tems, to reduce CO, emissions [77]; in automotive systems domain, contradictory physical
forces that lead to unsafe behaviour [78]; and comprehension of feature interaction for
the Internet of Things [79].

In our work, we focus on software engineering, which proved to be effective for software
production in large scale [80]. While an SPL may comprise a huge number of features, the
number of possible interactions is even exponentially bigger. A single feature in an SPL
product may interact with another feature or a set of features, creating a high-degree
complex interaction. Moreover, a feature behavior may be, for example, dependent on
presence conditions (e.g., the busy condition on the telephone example aforementioned)
and on input configurations (e.g., user entries, unpredictable variables’ values), which
can further increase the complexity of detecting interactions. Thus, even if a product
behaves as expected most of the time, in specific conditions it might present unexpected
interactions on either data or control flow.

Solutions to the feature interaction problem can find a very wide range of applications,
including in the domains of smart home systems [15], automotive systems [81], email
systems [14], embedded medical devices [7], antivirus products [82], databases [12, 25],
web systems [55], network [14], among others.

2.3.1 Feature interaction in SPL engineering

In SPL engineering, feature interaction is usually defined by means of a feature behavior,
i.e., changes in the behavior of the features involved in an interaction, which do not
occur when the features are used in isolation. Feature interaction can also manifest in
non-functional attributes, for instance when features in combination have an influence
on a particular attribute, such as performance [25]. Also, feature interaction can be seen
through the user’s point of view. For example, for a system to be perfectly configured
and ready to be delivered, the software engineer must guarantee that all the feature
interactions respect the user’s intentions.

The literature presents many definitions for feature interaction in the SPL engineering
context. Those definitions usually approach three major aspects: feature behaviour, non-
functional attributes, and user point of view. The main definitions are described next:

e Abal et al. [83]: “Features in a configurable system interact in non-trivial ways,
in order to influence each others functionality. When such interactions are unin-
tended, they induce bugs that manifest themselves in certain configurations but
not in others”.

16 MAIN CONCEPTS AND FOUNDATIONS

e Apel et al. [84]: “A feature interaction occurs when the behavior of one feature is
influenced by the presence of another feature (or a set of other features)”.

e Apel and Késtner [70]: “A feature interaction is a situation in which two or more
features exhibit unexpected behavior that does not occur when the features are
used in isolation”.

o Atlee et al. [13]: “feature interaction is a discrepancy between a feature’s behavior
in isolation versus its behavior in the presence of other features.”

e Hall [85]: “the desired behavior of a feature combination may violate the ideal
of individual feature modularity. However, combining independently designed and
validated features often leads to undesirable behaviors as well. When this occurs,
it is termed a feature interaction.”

e Mosser et al. [54]: “feature interaction as the identification of a mismatch between
the intention of the user and the obtained product.”

e Schobbens et al. [86]: “A recurrent problem is the one of feature interaction: adding
new features may modify the operation of already implemented ones. When this
modification is undesirable, it is called a feature interference.”

e Schuster et al. [12]: “Feature interactions describe the common observation that
two or more features (functionally) interact so that the behavior of the underlying
program may be changed”.

e Siegmund et al. [25]: “An interaction occurs when a particular feature combination
has an unexpected influence on performance.”

In summary, a feature interaction can be described as a situation in which a feature
influences another feature in either a positive or negative way. Without an earlier analysis,
interactions would only be discovered during feature composition, and even with early
detection, it still needs resolution, which usually requires domain knowledge.

Although most definitions present interactions as unintended and undesirable proper-
ties, not every interaction is harmful to the system. Sometimes, features are combined to
cooperate and accomplish their tasks. Priorities and overridings are some of the strate-
gies used by developers to specify the intended resolution of a feature interaction [81].
However, a solution for a feature interaction issue may require an special attention, i.e., it
should neither violate the specifications of the features involved in the interaction nor the
specifications of the other system’s features. Configuring products with distinct features
that present a correct interaction and offer stable and functional services is essential to
ensure the development of a reliable SPL.

2.3.2 Classification

Feature interaction has been categorized under different aspects, such as, according to
the software development stage in telecom [87]; based on how they can be detected [85];
and regarding the order and visibility of an interaction [84].

2.4 CHAPTER SUMMARY 17

Ohta and Harada [87] represented telecommunication services specification as finite
state machines (FSM) and described the interaction problem from the standpoint of the
FSM. Hall [85] classified interactions in three categories: (type I) the features dictate
contradictory behaviours; (type II) there is no immediate contradiction, but an intended
property of one participating feature will eventually be violated, and (type III) other
unwanted interaction. Hall provided approaches and tools to detect categories I and II,
and gave a support to understand category III.

Plath and Ryan [88] refine Hall’s type I, according to the feature to which the vio-
lated property belongs to. They also introduce lack of commutativity between features as
interaction type IV. Later, Apel et al. [84] classified feature interactions by means of two
dimensions: order and visibility. Whereas the order reflects the number of the features
involved in the interaction, the visibility describes feature interactions as either external
(if they impact the user-visible behaviour of the system) or internal (if it breaks internal
properties of the system or requires specific interaction code). In this study, we follow
Apel et al. [84] classification.

External feature interactions can be classified in two categories: functional and non-
functional interactions [84]. The former corresponds to interactions that violate the func-
tional specification of a composed system; and the latter refers to interactions that in-
fluence non-functional properties of a composed system, such as performance, reliability
and security.

Internal feature interactions can be classified into structural or operational interactions
[84]. Features interact structurally when coordination code is necessary to deal with the
problem caused by the interaction. A coordination code represents an additional piece
of code responsible for resolving the interaction, which is supplementary to the code
combination of the individual features involved. Coordination code can be surrounded by
preprocessor directives involving several features, or written in lifters [89] or derivatives
[90]. Features interact operationally when the data flows or control flows differ from the
combination of the flows of the features involved.

2.4 CHAPTER SUMMARY

In this chapter, we presented an overview of this thesis’ topic. We started by introducing
features in Software Product Lines. We also presented FOSD as a common strategy to
develop products in an SPL. Then, we introduced feature interactions and presented how
the SPL enginering community define and classify them.

Next chapter presents a mapping study that surveyed existing research on feature
interaction in SPL engineering in order to identify common practices and research trends.

Chapter

SYSTEMATIC MAPPING STUDY

The goal of this chapter is to present a systematic mapping study of the thesis topic. A
mapping study is a way to investigate the state-of-the-art and identify research topics that
researchers and practitioners could address. Recently, a variety of systematic mapping
studies have been conducted to different SPL fields in order to investigate, for example,
SPL testing [91], adoption [92], agile methods [93], non-functional properties [62], and
traceability [94].

This systematic mapping study aims at synthesizing existing research related to fea-
ture interaction solutions for SPL engineering. Hence, we categorize interactions according
to seven research questions. The study focuses on the large amount of research that has
been developed in the last years. We analyzed studies published between the years 2004
and 2018, although no lower limit has been set. As a result, 40 studies were found to be
relevant and mainly classified regarding to the SPL development lifecycle stages and the
feature interaction solution presented, either detection, resolution or general analysis.

Thus, the chapter consists of five main sections:

Section 3.1 presents the systematic mapping study protocol in detail;

Section 3.2 describes the classification scheme adopted in this study and results;
Section 3.3 discusses the mapping study findings and implications of research;
Section 3.4 presents the main threats to the validity of our study; and

Section 3.5 describes gaps and directions for future research.

3.1 MAPPING STUDY PROCESS

A systematic mapping study aims at presenting an overview of a research area, providing
its amount of studies, publication frequency over the years, results and trends [1]. It is
also used to provide a visual sampling and a classification of studies, besides identifying

19

20 SYSTEMATIC MAPPING STUDY

;1) |2 | 3
|s===ccccccccccc==- P lr- f P c el
1 Process Tasks 1 L

. Brain- Research |1 1| Conduct Conduct) 1 V| Keywording Data
I(‘)It/eerra\‘/tiiﬁ storming Question |* '| Automatic Manual Sfc Igzer;:sg 1 '| Relevant Extraction
sessions Definition : : Search Search P : : Topics and Mapping
(] !
! '

lassificatio
Scheme

Relevant

Protocol
Papers

Outcomes

Figure 3.1: The systematic mapping process, adapted from Petersen et al. [1]

publishing forums and research gaps. According to Kitchenham et al. [95], the mapping
study’s goal is to survey the available knowledge about a topic.

A systematic mapping study process comprises three main phases: planning, con-
ducting and documenting [95]. The planning phase encompasses the development of a
protocol, i.e., a framework that includes all the tasks of the mapping study and serves
as a guide in the other two phases. In order to design our mapping study protocol, we
conducted meetings and brain-storming sessions with SPL researchers, and all this infor-
mation supported the process and protocol specifications.

Figure 3.1 shows the tasks performed in the mapping study process and the outcomes
of each phase. In the first, the protocol and research questions are defined; the second
corresponds to the execution of the mapping and it is responsible for searching and
screening the papers. Two strategies were used to search for papers: automatic search
and manual search, and they were based on a set of inclusion and exclusion criteria. In
the final phase, we defined a classification scheme and extracted data mainly based on
the research questions. The results regarding a detailed analysis of each primary study is
presented as a systematic mapping study. In the next sections, all the process tasks are
detailed.

3.1.1 Research Questions

As previously stated, the objective of our mapping study is to identify common practices
on feature interactions, research trends, open issues and topics for future research. Thus,
we focused on identifying how do the existing approaches deal with feature in-
teractions in SPL, which is the general question that drives the research. Hence, five
more specific questions were derived, and a summary is shown in Figure 3.2.

e RQ 1. Which feature interaction solutions have been proposed for SPL engineering?
The solutions presented by the research papers represent the different approaches to
handle feature interaction in an SPL development project. They involve detection,
resolution and management of feature interactions. In this question, we aim to in-
vestigate these existing solutions, which can indicate the aspects addressed by both
research and industry communities, besides potential open rooms for improvement.

e RQ2. What are the different types of feature interactions the approaches deal with?
To answer this question, we used the Apel et al. [84] visibility classification. This

3.1 MAPPING STUDY PROCESS

How do the existing
approaches deal with
feature interactions in

SPL?

21

Which feature What are the In which phase of What are the
interaction solutions different types of the software domains in which
have been feature interactions lifecycle are the feature interaction
proposed for SPL the approaches feature interactions proposals are
engineering? deal with? handled? applied?

Which empirical
research methods
are applied to
evaluate / validate
primary studies?

Which (automatic) Which software
software lifecycle lifecycle artifacts
activities support are used in the
the identification of feature interactions
interactions? solutions?

Figure 3.2: Research Questions of the systematic mapping study

classification is related to the context of a feature interaction, i.e., interactions can

be either externally-visible or internally-visible.

e R(Q 3. In which phase of the software lifecycle are the feature interactions handled?
FOSD is a paradigm that favors the systematic application of a feature in all phases

of the software lifecycle [70]. FOSD aims at facilitating the structuration, reuse,

and variation of software in a systematic and uniform way. In this question, we
intend to identify in which lifecycle phase the feature interaction solution takes
place. In addition, feature interaction solutions can be handled in many different
activities of those phases, as for example, during the domain design phase or product

configuration. In addition, the following sub-questions were derived:

— RQ 3.1. Which software lifecycle activities support the identification of in-
teractions? The process to identify and resolve interactions usually involves
several activities in different software lifecycle phases. For example, the domain
analysis phase may include domain scoping, feature modeling and automated
reasoning; and the domain design and specification phase, may include archi-

tecture modeling and a formal specification [70]. Furthermore, in some cases,

part of these activities are automated.

— RQ 3.2. Which software lifecycle artifacts are used in the feature interactions
solutions? Different artifacts can be used to support the feature interaction
solutions during each phase of the software lifecycle. Examples of those arti-
facts are: requirements and feature model, project plan, business case and risk

assessment.

22 SYSTEMATIC MAPPING STUDY

Table 3.1: Digital Libraries

ACM Digital Library http://dl.acm.org/

IEEE Xplore http://ieeexplore.ieee.org/

Scopus http://www.scopus.com/
Engineering Village http://www.engineeringvillage.com/
Science Direct http://www.sciencedirect.com/
Springer http://www.springer.com/

Table 3.2: Search String

(”feature interaction” OR ”feature-interaction”)

AND
(”SPLE” OR ”SPL” OR ”product line” OR ”product family” OR
”domain engineering” OR ”application engineering” OR ”variant-rich”
OR 7variability” OR ”feature-oriented” OR ”feature modeling” OR
”feature analysis” OR ”core asset”)

AND

("software” OR ”system”)

e RQ 4. What are the domains in which the feature interaction approaches are ap-
plied? SPL can be applied in many different domains, such as, medical, financial and
automotive embedded systems. Investigating the domains in which feature interac-
tions approaches have been applied can indicate: (i) domains where the study on
feature interactions are essential; and (ii) domains overlooking this research topic.

o RQ) 5. Which empirical research methods are commonly employed to assess the
primary studies? It is important to analyze the research rigor in feature interac-
tions proposals for SPL engineering. In this question, we aim to investigate the
applied empirical research methods (e.g. case study, controlled experiment, quasi-
experiment and formal validation). It allows assessing the maturity of evaluation
and validation in the area.

3.1.2 Search Strategy

The strategy of searching and selecting the primary studies consisted of three main phases:
automatic search, manual search and full-text reading, as shown in Figure 3.3. For the
first phase, a search query was executed in the digital libraries listed in Table 3.1. They are
key publisher-specific resources [95] and cover almost all important conferences, journals
and workshops research studies in the Software Engineering field. The automatic search
covered all studies published up to the first quarter of 2016.

The search query was composed of a set of keywords defined according to the method
of Kitchenham et al. [95]: (i) extracting software engineering concepts and terms from the
research questions; (ii) reviewing terms used in the known papers; and (iii) identifying
synonyms of the key terms. Based on that, three principal keywords were chosen: feature
interaction, product line and software. They served as basis for building the full string,
which was created with the addition of synonyms and alternative words, and joined with
AND and OR operators, as Table 3.2 shows.

3.1 MAPPING STUDY PROCESS 23

appraise studies

————— \
Activities " Amount of | | I | Phases
| Papers | | Result | ‘
Apply inclusion/exclusion . ! | | | ‘
Stage 1 criteria by reading title, ol oAp=1841 L | Ag=66 || ' Phase 1:
abstract, and keywords : : : : . Automated
| | | | ‘ Search
Apply inclusion/exclusion 3 | ‘ | | \
Stage 2 criteria by reading introduction 2 Ap =66 : - | A =50 ||
and important sections | | | | \
R T L
\
. \
Stage 3 Manual search in Conferences | . My =5 ‘
and Journals 4 .
\ Phase 2:
\ Manual
‘ Search
Stage 4 Snowballing GRS — My =9 |
\
_______________________________ S
\
\
Ar + M, + M, =64
Merge R | Phase3:
| Full-texting
| reading
" N \
Stage 5 Read full papers and critically 64 - Total = 35 |
\

Figure 3.3: Search and selection process

After applying the search string in all search engines listed in Table 3.1, we collected
a pool of 1841 studies. Figure 3.4 shows the share of papers per search engine, in which
the IEEE Xplore and the Springer were the ones with more papers collected. We also
collected 103 duplicated studies, since more than one digital library indexed the same
venues. Most of the 1841 studies were not related to the topic of interest. To better
select the studies and mainly eliminate those not directly related to the mapping study’s
goal, we defined a set of inclusion and exclusion criteria. Then, the automatic search was
performed in two stages, as Figure 3.3 shows. In the first, the criteria were applied on the
total of studies by reading their title, abstract and keywords. This stage excluded most
of the non-related studies, resulting in a pool of 66 studies. In the second stage, we read
the introduction and concluding remarks sections. From the set of 66 studies, we removed
another 16 studies, based on the same set of inclusion and exclusion criteria, as follows:

e Inclusion Criteria

— Written in English;

— Peer-reviewed;

24 SYSTEMATIC MAPPING STUDY

Percentage of Papers per Digital Library

ACM
Springer 5.72%
30.77%

Science Direct

0.64% /

Scopus
4.98%

Figure 3.4: Percentage of papers collected in each Digital Library by using our search
string

— Addressing feature interaction in SPL engineering, in which a feature interac-
tion occurs when the behavior of one feature is influenced by the presence of
another feature.

e Exclusion Criteria

— Short papers (less than 6 pages), studies describing tutorials, workshop and
poster summaries, books;

— Studies only related to single systems, i.e., when a study did not address feature
interaction in SPL engineering;

— Studies addressing feature interactions in a different meaning, such as depen-
dencies (include and exclude constraints) and interactions between features in
a feature model,

— Studies that did not address any of the topics of the research questions;

— Duplicate studies. When a study has been published in more than one venue,
only the most complete version of the research is considered. The remaining
studies are excluded.

The manual search also consisted of two activities: manual search in conferences pro-
ceedings and snowballing [95]. Previously, in the automated phase, we initially collected
1841 studies. Since that phase was executed in six well-recognized databases and we had
already collected a significant amount of studies, the manual search was based on key con-
ferences which commonly publish studies in the research area, which are: International
Systems and Software Product Line Conference (SPLC), International Conference on
Software Engineering (ICSE), Feature Interactions in Telecommunications and Software
Systems (ICFI), and International Workshop on Feature-Oriented Software Develop-
ment (FOSD Workshop). As a result, such a manual search yielded an additional set
of 5 studies.

3.2 RESULTS 25

Snowballing consists of a manual search based on the reference list of relevant studies,
and it is usually used to support the automated activity. This kind of reference search
is also known as backwards snowballing [95]. For this activity, we analyzed the studies
selected until this stage, i.e., 55 studies, 50 from the automated search and 5 from the
manual search in conferences. The process consisted of analyzing the reference lists from
those 55 studies, from which we selected 9. Thus, after merging the results from both
automatic and manual search, we had a pool of 64 papers selected for the full-text reading
phase.

In this last phase, we analyzed the remaining studies by carrying out a full-text
reading and analysis. Then, we removed papers that: (i) presented an approach but it
was not focused on feature interaction; (ii) presented a feature interaction discussion
rather than a feature interaction solution; and (iii) had a more recent paper reporting the
same approach. After performing a full-text reading, 35 primary studies were included in
this systematic mapping study.

In order to ensure the reliability regarding the choice of the included studies, each
study was evaluated by two researchers. Besides, they were responsible for designing the
mapping protocol, searching candidate studies, reading and selecting the included studies,
and also summarizing the results. Each accepted study underwent an agreement process,
and in case of uncertainty and disagreement, the authors of the candidate study were
contacted to solve and give appropriate guidance.

3.1.3 Update

We updated this systematic mapping study to cover papers published up to 2018. Previ-
ously, we had collected studies until the first quarter of 2016. Then, we conducted a new
manual search and collected 5 more studies. We extended the preceding list of confer-
ences, which included SPLC, ICSE, ICFI, and FOSD Workshop, and we also performed
a manual search on the International Conference on Automated Software Engineer-
ing (ASE), European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS), International Conference on Gener-
ative Programming: Concepts Experiences (GPCE), and International Conference on
Object- Oriented Programming, Systems, Languages, and Applications (OOPSLA).

After the updating, we now have a total of 40 primary studies. The next section
presents our results including all studies selected up 2018.

3.2 RESULTS

The mapping process consisted of three phases: planning, conducting and documenting
(Figure 3.1). As a result of the first and second phases, we selected 40 studies, as Table
A.1 and Table A.2 in Appendix A shows. Figure 3.5 shows the distribution of the primary
studies over time.

26 SYSTEMATIC MAPPING STUDY

Studies x Year

1 1 1 1
1
0

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 3.5: Number of studies by publication year

3.2.1 Classification Scheme

In order to analyze the studies, we first extracted the title, authors, venue and publication
year. Next, we attempted to extract data to answer each of the research questions guided
by a classification scheme, Furthermore, before proceeding with the data extraction, we
performed a pilot study so that we authors could reach a mutual agreement in terms of
research questions. This activity aimed at avoiding researcher’s misinterpreted answers.

The scheme was based on the set of research questions designed for this study. The
studies were published in journals, conferences and workshops from 2004 to 2018, and
summarized according their venues in Table 3.3. Although we have not set a lower year-
limit, the oldest paper was published in 2004. The selected studies were published in
twenty-four different venues, from which two of them, namely the International Con-
ference on Feature Interactions (ICFI) and the International Conference on Software
Engineering (ICSE), stood out.

The classification scheme was developed iteratively and revised every time a new
study was added. Each question classifies the study according to its own parameter,
for example, RQ1 is related to solutions, RQ2 encompasses feature interactions types
and RQ3 identifies the phase in the software lifecycle. Thus, as new papers were being
analyzed, new categories within each question were created when needed. After reading
the last selected study, the classification scheme was then established.

3.2.2 Feature Interaction Solutions

Different solutions have been proposed to handle feature interactions in different software
development phases. In this study, we identified 3 main categories: detection, resolution
and analysis.

The objective of a detection approach is to use or create strategies to identify cases
of feature interaction. A resolution approach often considers that the interactions have
already been identified, and focuses on solving the interaction problem to deliver the
desired products. Finally, we named analysis approaches the rest, i.e., any approach that

3.2 RESULTS 27

Table 3.3: Studies’ Venues

Venue #
Int. Multi-Topic Conference [9]
Int. Conf. and Workshops on Engineering of Computer-Based Systems [28, 7]

Int. Conf. on Automated Software Engineering [22, 96, 50]
Int. Conf. on Feature Interactions [16, 97, 55, 14]

Int. Conf. on Fundamental Approaches to Software Engineering [17]
Int. Conf. on Generative Programming [21]
Int. Conf. on Model-Driven Engineering and Software Development [98]
Int. Conf. on Software Composition [30]
Int. Conf. on Software Engineering [24, 11, 4, 25]
Int. Requirements Engineering Conference [19]
Int. Software Product Line Conference [26, 6, 99]
Int. Symposium on Software Reliability Engineering 2]
Int. Symposium on the Foundations of Software Engineering [20, 100, 101]

Int. Workshop on Feature-Oriented Software Development (18, 29]

Int. Workshop on Variability Modelling of Software-intensive Systems [54, 12
Symp. on Foundations of Health Information Engineering and Sys. 8]
Workshop on Model-Driven Engineering, Verification and Validation [81]
FME Workshop on Formal Methods in Software Engineering [13]
Journal of Software & Systems Modeling [10]
Journal of Software Quality Journal [5]

Journal of Automated Software Engineering (23, 27]
Journal of Computer Networks [3]
Journal of IET Communications [15]
Journal of Information and Software Technology [82]

aims to model, specify, manage and discuss feature interaction. These categories are not
mutually exclusive, they can be combined to cover many software development lifecycle
phases.

We classified the identified approaches according to the lifecycle phase when feature
interaction is studied. We defined two main stages: early phases and source code. In the
former, the studies deal with interactions without the need to work with source code;
conversely, the latter considers studies that handle interactions using either the code of
the system or the running system.

Table 3.4 shows the amount of studies by approach, as follows: (i) Early Detec-
tion (De), when it takes place before the implementation, during feature modeling and
specification activities; (ii) Source Code Detection (Dsc), approaches that creat-
ed/used a strategy to detect feature interactions in source code or used the runtime sys-
tem; (iii) Early Resolution (Re), solving interactions through specifications and models
before the system implementation; (iv) Source Code Resolution (Rsc), approaches
that add, adapt or remove code to solve the interaction; (v) Early Analysis (Ae), ap-
proaches that analyse feature interactions based on requirements, or other early artifacts;
and finally (vi) Source Code Analysis (Asc), which analyzes approaches (including
interaction prevention) based on source code. We next discuss the categories of the iden-
tified approaches.

28 SYSTEMATIC MAPPING STUDY

Table 3.4: Primary studies

Category Primary studies
Early Detection (De) [13, 15,81, 7,9, 16, 22, 17, 98, 11, 2, 18, 8, 5, 23, 96]
Source Code Detection (Dsc) [12, 82, 25, 4, 6, 10, 3, 99, 100, 50]
Early Resolution (Re) [54, 28, 98, 2, 20, 5, 27]
Source Code Resolution (Rsc) [97, 30, 24, 26, 29, 10, 101]
[
[

Early Analysis (Ae) 14, 55, 19]
Source Code Analysis (Asc) 21]

3.2.2.1 Early Detection. Early Detection approaches concern about identifying fea-
ture interactions during the first stages of the software development lifecycle. Studies
in this category aim to predict feature interactions based on models and specifications
[15, 7, 98, 11, 18, 8, 5, 96]. For example, Atlee et al. [13] simulated violations among
features based on bisimilarity in transition systems, and Hu et al. [15] proposed a Seman-
tic Web-based policy interaction detection (SPIDER) method to automatically detect
interactions from ontologies and SWRL (Semantic Web Rule Language) rules.

Aspect-oriented feature analysis techniques are also used to specify how features re-
late to each other, by providing separation of concerns at feature level [9, 98, 5]. These
techniques predict interactions based on the identification of dependencies in crosscut-
ting concerns aided by divergences either between dependency diagrams and other UML
models [9] supported by critical pair analysis [98], or among goals described in a Goal-
Oriented Requirement Language (GRL) [16]. In addition, Mussbacher et al. [5] used GRL
combined with the Use Case Maps (UCM) notation to describe scenarios and architec-
tures. GRL and UCM together constitute the User Requirements Notation (URN), which
is extended with aspect-oriented concepts (AoURN). They aimed at identify interactions
based on traceability, from feature model to goal model.

To support the identification and analysis of potential safety-critical feature interac-
tions, Liu et al. [7] also proposed a traceability strategy, but in this case from requirements
to fault models. Similarly, Bessling and Huhn [8] presented the System-Theoretic Process
Analysis (STPA) to identify unexpected feature behavior and interactions of components
through the specification of safety requirements, fault models and fault injection. Ab-
dessalem et al. [96] also presented a model testing approach to respect system safety
requirements. They introduced an automated approach to detect undesired feature inter-
actions in self-driving systems at early stages.

Another class of studies uses model checking to detect interactions [22, 17, 11, 23]. The
main idea is to generate appropriate interfaces on each feature to preserve its properties,
and check for interactions by combining interface information. Usually, these approaches
develop proof-of-concept prototypes based on propositional calculation [22], event calcu-
lus, SAT solver [17], and SAT-based symbolic model checking algorithms (IMC and IC3)
[11], as a way to find violating products. The analysis of SPL requirements models allows
early detection and correction of errors in features specification [11].

FEarly Detection approaches also exploit the Alloy modeling language to support the
feature-oriented design. On the one hand, features are defined as Alloy modules and their
correctness properties are specified in the post-conditions of the feature’s actions, to be

3.2 RESULTS 29

translated as Alloy assertions for consistency checking [2]. On the other hand, Dietrich et
al. [81] first specify interactions with the feature-oriented requirements modeling language
(FORML), then translating the FORML model into an Alloy model. In both approaches,
the Alloy Analyzer is the responsible for the automatic feature interaction detection.

3.2.2.2 Source Code Detection (Dsc). This category is related to approaches that
detect feature interactions during or after the implementation phase. One strategy is to
first annotate the source code with features specifications and then to use a model checker
that automatically detect conflicts based on those specifications [4, 6, 3]. To accomplish
the feature specification task, the following techniques have been used: design by contract
6, 3], AspectJ and FeatureAlloy [3], and assertions [4].

For example, Scholz et al. [6] used design by contract based on Java Modeling Lan-
guage (JML) to formally specify the behavior of methods and classes, and a model checker
to identify conflicts. Furthermore, Apel et al. [4] developed the SPLVerifier, a model-
checking tool for C-based and Java-based SPL.

Other studies [12, 82, 25, 10] concern about the variability aspects of an SPL and how
it can influence the feature interaction analysis. A common technique is the use of ASTs
(Abstract Syntaz Trees) to parse the source code to support the identification of feature
interactions. Different parsers have been used, for example, TypeChef (C language) [82],
Java Compiler Tree API [10], and Fuji tool (feature-oriented compiler for Java) [12].

Rodrigues et al. [82] analyzed the source code with TypeChef and counted, for exam-
ple, the occurrence of ifdef statements and functions, as a way to compute dependencies
among features. Linsbauer et al. [10] presented a variability extraction approach, based
on ASTs, to identify traces and dependencies from features and feature interactions to
their implementation artifacts. ASTs also supported the identification of feature-oriented
design patterns, which enforce feature interactions by class refinements and caller-callee
relations [12].

Features’ combination may also lead to surprising non-functional properties results,
i.e., when a particular combination of features has an unexpected influence on a non-
functional property. For example, Siegmund et al. [25] carried out a performance pre-
diction that determines the influence of an interaction on performance based on a small
set of measurements on code; and Zhang et al. [99] proposed a mathematical model for
performance measurement.

Lastly, other approaches aim to detect interactions based on the system execution.
Nguyen et al. [100] and Meinicke et al. [50] proposed dynamic analysis tools for auto-
matically discovering interactions. Nguyen et al. [100] presented iGen, which looks for
interactions by running the system under a set of configurations to determine coverage
information. iGen creates the minimal set of configurations that cover most of the inter-
actions. Meinicke et al. [50] proposed a tool to execute all configurations simultaneously
and allows users to inspect differences in data and control flow at runtime.

3.2.2.3 Early Resolution (Re). The Early Resolution category consists in solving
a problem caused by an interaction between two or more features through adaptations

30 SYSTEMATIC MAPPING STUDY

in models. Three studies that performed early detection (De) also presented mechanisms
to resolve interactions [98, 5, 2]. Apel et al. [2] allow the developer to resolve interactions
using Alloy derivatives, which disable properties of one of the involved features. In addition
to disable properties, another strategy is to change the order in which the selected features
are added in the product [98, 5].

Another set of Re approaches considers that feature interactions have been previously
detected and then presents solutions to resolve interactions using modeling strategies [54,
28, 20, 27]. Feature exclusion, mutual exclusion, dependencies, precedences and priorities
are examples of techniques to solve unintended interactions at specification time [20, 27].
Besides that, ignoring interaction and feature adaptation are also other examples [54].
For instance, Padmanabhan and Lutz [27] developed the DECIMAL tool and a decision
model to investigate whether those techniques could be represented as constraints in
DECIMAL. Moreover, Mosser et al. [54] considered the way an interaction is resolved as
a variation point in the configuration process.

Feature model-based approaches [28] also represent a way to resolve interactions. For
example, either a feature can be integrated to others or a new feature can be added in
the feature model to resolve an interaction. In addition, Sochos et al. [28] proposed a new
feature model relation, interacts relation. Unlike the previous ones, Bocovich and Atlee
[20] presented a fine grained method to resolve interactions at requirements stage. For
each feature, variables, actions and outputs are specified to respond system inputs and
environmental conditions. Resolution strategies include features priority and to assign
an output variable to either the average, minimum, maximum or the sum of the values
described by the features’ actions.

3.2.2.4 Source Code Resolution (Rsc). Providing implementation alternatives is
the main characteristic of source code-based feature interaction resolution approaches.
Typically, those approaches explore solutions to the optional feature problem in the SPL
development [30, 24, 26, 10], i.e., when optional features are apparently independent at
their specifications, but are not in their implementation, indeed.

Hence, different resolution strategies have been proposed to deal with feature inter-
actions, such as: refactoring derivatives [30, 24, 26, 10|, preprocessors or similar tools
for conditional compilation [97, 26, 29], changing feature behavior, moving code from one
feature to another, multiple implementations per features, and resolution modules cho-
sen at runtime [101]. Késtner et al. [26] discussed many of the aforementioned strategies
to eliminate implementation dependencies and solve interactions related to the optional
feature problem. However, those strategies may impair code quality, require additional
effort, and decrease performance.

In this way, Takeyama and Chiba [30] proposed a design principle to reduce the
effort in developing derivatives. They used a feature oriented programming language,
the FeatureGluonJ (based on JAVA), to implement derivatives in a reusable manner for
every combination of sub-features. Liu et al. [24] and Linsbauer et al. [10] also discussed
derivatives as the main strategy to resolve interactions. Basically, the code that causes
the interaction between features is removed from them and used to create a new module,
separately.

3.2 RESULTS 31

Another common strategy is to use preprocessors by either annotating or colouring
the features’ source code. For example, to support the specification of features through
algebra concepts, Batory et al. [29] painted each fragment of code in a program by at least
one color. Silva et al. [97] presented a different approach, which consisted in annotating
the source code with the Java annotations API, based on dependency models in both
design and implementation stages.

Finally, the approach proposed by Zibaeenejad et al. [101] resolved conflicts among
features at runtime. They implemented resolution modules that are chosen at runtime,
depending on sensors outputs.

3.2.2.5 Early Analysis (Ae) and Source Code Analysis (Asc). Finally, the two
last categories are related to approaches that do not discuss detections or resolutions of
feature interactions, but rather propose ways to analyze them through either models and
specifications based on early-phases artifacts (Ae) or source code (Asc).

Three studies were identified as Early Analysis (Ae) approaches [14, 55, 19]. Bredereke
[14] and Gibson et al. [55] analyzed interactions based on the requirements specification.
The former extended the formalism Z to specify a family of requirements into requirements
modules, and used a type checker tool to point out contradictions in the family. The latter
discussed possible interactions at the requirements stage during the analysis of an e-voting
SPL system. Furthermore, a modelling approach was proposed by Shaker et al. [19] to
explicitly model intended interactions among state-machine of features.

Unlike Ae approaches, Kim et al. [21] presented a source code-based analysis. This
approach models interactions as a derivative tree and extended the CIDE tool, an Eclipse
plugin for coloring the source code, to map different nestings of colors to that tree.

3.2.3 Software lifecycle

Figure 3.6 shows how the primary studies are spread over the FOSD phases: domain
analysis (FDA), domain design & specification (FDD), domain implementation (FDI),
and product configuration & generation (FPC). There are two main groups, early-stage
approaches (De, Re and Ae) and source code approaches (Dsc, Rsc, Asc). The pattern
presented in Figure 3.6 shows that FDA and FDD are more common in the former group,
while FDI and FPC in the latter, as we discuss next.

Approaches focused on managing feature interactions at early stages, i.e., early de-
tection (De), early resolution (Re) and early analysis (Ae), are mostly concentrated in
working at FDA and FDD, as Figure 3.6 shows. Usually, FDD and FDA phases of early-
stage approaches deal with: (i) (automatic) detection based on requirements modeling,
features and software artifacts [13, 81, 9, 28, 98, 20, 18, 27, 96]; (ii) automatic reasoning
[15, 98, 2]; (iii) formal specification based on model checking [22, 2, 23], SAT solvers
[17, 11]; and also (iv) software safety analysis [7] with hazard definitions and failure
modeling [8].

Meanwhile, as expected, only source code approaches (Dsc, Rsc and Asc) involved
domain implementation (FDI) and product configuration & generation (FPC) phases.
In general, they usually performed feature implementation and configuration activities

32 SYSTEMATIC MAPPING STUDY

Studies X Approach/LifeCycle
OFDA OFDD OFDI EFPC

25 7
20
FDD; 13
15 o
FPC; 1
FPC; 6
FPC; 8
10 1
FoD; 7
FDI; 7
FoI; 6
> DA; 10
FDAL. Foo; 1
. Fop; 2 .
FDA; 3 FoD; 2 Fee: 1
0 Foa; 1 | [For; 1
De Re Ae Dsc Rsc Asc

Figure 3.6: Lifecyle phases per approach. DA: Domain Analysis; DD: Domain Design and
Specification; DI: Domain Implementation; and PC: Product Configuration and Genera-
tion

through: (i) feature modules, derivatives, feature selection, and composition [30, 24, 26, 6,
29, 10, 3, 101]; (ii) aspect specification [30, 4, 26, 3]; (iii) refactorings [12, 24]; (iii) source
code annotations [97, 21, 6, 29]; (iv) preprocessor directives [82]; and (vi) the influence
of performance on a product configuration [25, 99].

Although FDD and especially FDA are not the focus of source code approaches, two
Dsc [6, 3] and two Rsc [97, 29] approaches presented activities in those phases, which
consisted of strategies for either model checking approaches [6, 3], feature composition
[29], or dependency models analysis in both design and implementation [97]. Further-
more, a group of those studies carried out partial automatic source code detection and
resolution. To accomplish this task, they used different tools, such as SPL Conqueror [25],
SPL Verifier [3], TypeChef [82] and Fuji tool [12].

3.2.3.1 Artifacts. Early and source code approaches adopted many software artifacts
to support their activities. For example, source code approaches used classes, methods,
fields, statements and variation points [12, 82, 29, 10]. Additionally, Table 3.5 shows
various modeling techniques used to support feature interaction approaches.

Regarding the variability model, most approaches used the feature model as main
model [12, 25, 9, 28, 30, 19, 18, 29, 10, 5], but often with slight differences and similar
names, such as feature diagram [54, 17, 8], product model [8], feature machine [20],
AoURN FM [5], feature structure tree [6], generic feature model [30] and variability

3.2 RESULTS 33

Table 3.5: Software artifacts

Category Artifacts
UML diagrams class, sequence, collaboration diagrams, state
machine, use cases, activity models, business
process
Goals goal model, GRL model, environment model
Dependency dependency model, dependency graph
Feature and product feature model, feature diagram, product
model, feature machine, AoURN FM, feature
structure tree, generic feature model, variabil-
ity model
Aspects aspect feature model, point-cut feature model
Error/Fault error model, fault injection model
Ontology ontologies, world model
Graph implication graph, call graph, AoURN’s con-
cern interaction graph, GRL graph, depen-
dency graph

model [16].

Other models are very specific to their approach, as Table 3.5 shows, such as: (i) Goal
Oriented Requirement Language (GRL) model [16]; (ii) aspect feature model and the
point-cut feature model [9]; error model and fault injection model [8]; ontologies [15, 19];
dependency models [97, 21, 98, 10] and graphs [82, 25, 21, 4, 10, 5].

3.2.4 Feature interaction types

Unintended feature interactions are usually considered as either external or internal to
the system [84]. Externally-visible interactions include functional and non-functional be-
haviors, and internal interactions involve structural and operational interactions. Figure
3.7 shows the amount of papers in each category.

Functional feature interactions are related to interactions that violate the functional
specification of a configurable system. Since most approaches presented feature inter-
actions solutions based on models and specifications, such as approaches not based on
source code, they deal with interactions at the functional level, as Figure 3.7 shows.

However, functional interactions are also present in Dsc approaches [3, 4]. Apel et
al. [3] analyzed whether feature-based specifications can be used to detect feature inter-
actions in combination with formal specifications and verification techniques. Moreover,
Apel et al. [4] provided a model-checking tool to check whether a feature composition sat-
isfies the specifications of the involved features. Conversely, studies about non-functional
feature interactions are less common than functional ones. For example, Siegmund et al.
[25] proposed to predict system performance based on selected features. They aimed at
detecting the system performance by analyzing its influence on the involved features.
Zhang et al. [99] proposed a mathematical model that abstracts software systems to
Boolean functions to identify performance-relevant feature interactions.

Although some source code approaches presented external interactions, most Dsc, Rsc
and Asc approaches came up with solutions more related to internal feature interactions,
i.e., structural and operational interactions. Studies about structural interactions were

34 SYSTEMATIC MAPPING STUDY

Type x Approach

Intended o o

Operational °
Structural o ° o
Non-func °
Functional H o H

De Dsc Re Rsc Ae Asc

Figure 3.7: Number of approaches per feature interaction type. De: early detection; Dsc:
source code detection; Re: early resolution; Rsc: source code resolution; Ae: early analysis:
Asc: source code analysis

more frequent than operational ones, since the approaches usually work directly in the
code through modules, directives and assertions.

Besides unintended interactions (functional, non-functional, structural and opera-
tional), Figure 3.7 shows two approaches that work strictly with intended interactions
in SPL engineering [30, 19]. Takeyama and Chiba [30] discussed the difficulty to main-
tain a large number of derivatives, and Shaker et al. [19] proposed to model intended
interactions as state-machine of features.

3.2.5 Domains

The 40 primary studies concern many application domains, such as smart homes, auto-
motive, e-mail systems, database management systems, medical devices, phone systems,
network systems and antivirus. Each primary study considers a different number of do-
mains, from one up to forty program families with different purposes and sizes.

Figure 3.8 gives an overview of the distribution of the studies based on their applica-
tion domain and feature interaction approach. The Figure only shows the domains that
appeared more than once. For example, six different studies worked with database systems
and four approached automotive systems.

Regarding the feature interaction approaches, we observed that some domains were
more common in some approaches than in others. For instance, Phone and telecom-
munication systems were concentrated in early approaches, while database systems, file
compressor and games were the opposite, they appeared in source code approaches, as
Figure 3.8 shows. The predominance of De and Dsc in Figure 3.8, reflects the behavior
of the set of primary studies, which has mostly detection approaches.

In addition to the domains showed in Figure 3.8, a large number of systems were
also found. Among the types of systems that did not appear repeatedly in the set of
primary studies are: text editor, web server, web browser, operating system, e-voting,

3.2 RESULTS 35

Application Domains

ODe ODsc ORe ORsc OAe OAsc

File system

Minepump system |

Payment software
List structure
Embedded Medical
Antivirus

Elevator system
Game |

File compressor
Network | | |

Smart home

Automotive
Graph |
Email system |
Database system |
Phone Sys. and Telec. | |

0 1 2 3 4 5 6 7 8

Figure 3.8: Number of studies by application domain. File System: [2, 3]; Minepump:
[3, 4]; Payment: [5, 3]; List structure: [6, 3]; Embedded medical device: [7, 8]; Antivirus:
[9, 10]; Elevator system: [11, 3, 4]; Games: [12, 13, 10]; File compressor: [13, 4, 10];
Network: [2, 3, 10, 14]; Smart home: [15, 16, 17, 18]; Automotive: [6, 19, 20, 11]; Graph:
(2, 3, 21, 4, 12]; Email: [22, 23, 3, 4, 10]; Database: [24, 25, 26, 3, 12, 10]; Phone System
and Telecommunications: [27, 28, 11, 19, 29, 30, 2].

bank system, microwave oven product line, graphical model editor, family of adaptation
protocols, product-line that produce tools to manipulate Jak files, an event service SPL,
and others.

3.2.6 Empirical assessment methods

From the set of included primary studies, 24 out of 40 employed case study as their
empirical assessment method. However, only 5 presented a study detailed enough for
an empirical research method, that is, employed a well-structured case study with basic
information, such as hypothesis, research questions, methodology, results, discussion and
threats to validity.

In the remainder subset, the central focus of their “case study” was to demonstrate
the proposal in practice. The main used terms were: “explore the potential benefits and
drawbacks of our approach”, “demonstrate the utility”, “demonstrate the approach”, “il-
lustrate our approach”, “a demonstration of practicality and generality of our approach”,
and “case study as proof of concept”. Other empirical assessment methods were also
considered in the set of included primary studies, as Figure 3.9 shows.

36 SYSTEMATIC MAPPING STUDY

Methods X Amount of Studies

Evasive M Detailed

"Evaluation”
"Exploratory study" [l
"Empirical study" [NN

"Proof of concept"

"Experiment" [|
"Example"
"Case Study" I
0 2 4 6 3 10 12 14 16 18 20 22 24 26

Figure 3.9: Empirical methods as named by the studies

Among the 40 studies, 9 presented an evaluation method with many details about the
evaluation practices and process [12, 82, 25, 4, 10, 3, 100, 96, 50|, as shown in Figure 3.9.
For example, Rodrigues et al. [82] presented an empirical study to assess to what extent
feature dependencies exist in actual software families following a well-designed process
with goals, questions, metrics, subject selection, instrumentation, operation, results, dis-
cussion and threats to validity. They evaluated the source code of 40 software families
from different domains.

In addition, Apel et al. [3] presented an exploratory study with 10 feature-oriented
systems, and the case studies in [12, 25, 4, 10] evaluated their approaches with 6, 7, 6,
3 different systems, respectively. Apel et al. [4] evaluated its approach with 3 systems,
but they implemented 2 versions (in C and Java) for each system. In addition, real-world
case studies were performed in [12, 25, 10].

3.3 DISCUSSION

This section discusses the key findings of our study, as well as outlines directions for
future research. In this systematic mapping study, we identified three main categories of
approaches that handle detection, resolution and analysis of feature interaction. Each one
was further classified according to the moment an interaction was managed, i.e., early
phases studies or source code studies. Table A.1 and Table A.2 in Appendix A shows a
summary of the 40 primary studies. Along this section, we discuss about the different
feature interaction solutions, tools, domains and directions for further research.

3.3.1 Feature interaction solutions

When analyzing the selected studies, we could observe most of them consider either pre-
dicting interactions based on models or specifications, or solving and detecting interac-
tions based on how the program code was implemented. Although some source code-based
approaches also presented feature specifications [29, 3, 10] and modeling [54, 97, 6], they
were focused on discussing strategies [6, 3] to identify interactions after implementing
the software. For these approaches, source code represents the main software artifact.

3.3 DISCUSSION 37

We next present the main concerns about detection, resolution and analysis of feature
interactions.

Detection approaches. Early detection (De) is the most represented category with
16 papers (Table 3.4). They predict feature interactions in SPL based on feature speci-
fication and modeling. A prior interaction detection may be used to support developers
when implementing the features.

In this way, De approaches focused on identifying whether predefined constraints still
remain after feature combinations. We identified seven different early detection strategies:
(i) traceability from specifications to goal and fault models [7, 5]; (ii) dependencies in
aspects cross-cutting concerns [9, 98]; (iii) dependencies in UML and goal models [16, 18];
(iv) verification of Alloy assertions [81, 2]; (v) model checking or propositional calculation
of feature properties and models [22, 17, 11, 8, 23|; (vi) verification of SWRL inferences
[102]; and (vii) bisimilarity in transition systems [13].

Conversely, source code approaches (Dsc) use models and specifications of features and
software artifacts to analyze whether feature properties still remain after feature combi-
nations. Those properties commonly arise from source code manual analysis. Others use
code-coverage strategies based on dynamic analysis to find the locations where features
interact. The Dsc approaches used four strategies to detect interactions: (i) model checker
[4, 6, 3]; (ii) AST-based parser, [12, 82, 10]; (iii) non-functional properties measurements
[25]; and (iv) runtime software [100, 50].

From the total of Dsc approaches, two of them do not use any kind of specifications
to detect interactions [100, 50]. Instead, the programs need to inform which are the
inputs that interact or the source code need to present feature annotations.! Nonetheless,
Nguyen et al. [100] focused on code coverage and is only able to detect the localities in the
code where features interact. Similarly, the tool and study presented by Meinicke et al.
[50] identify where interactions occur based on control flow and data, but they focus on
studying the essential configuration complexity. They show that the amount of variability
that actually induces differences and interactions in the execution may be small enough
to handle with a suitable analysis strategy.

Both, De and Dsc, have verification techniques based on model checking, the difference
between them is that in the latter feature-based specifications are defined using both
models and source code analysis. Typically, model checking strategies are combined with
modeling (e.g.,design by contract) and implementation methods (e.g., code annotations,
aspects). Another source code detection strategy is to use AST (Abstract Syntax Tree)
to parse the code and support the identification of dependencies and design patterns.

De approaches usually do not depend on software programming languages and were
mainly used to estimate feature interaction costs in software systems. Otherwise, Dsc
approaches were concentrated on indicating either the absence or presence of feature
interactions by means of specific languages: C, C++, and Java.

Resolution approaches. Early resolutions (Re) usually deal with model adaptations,
especially regarding the arrangement of features. Five strategies were identified in SPL

1Feature annotations are annotations used to surround a piece of source code to show that piece
correspond to a given feature.

38 SYSTEMATIC MAPPING STUDY

Table 3.6: Papers and tools. C: category; A: assessment method.

Paper Tool C A
[98] MATA tool De/Re
2] FeatureAlloy De/Re
[5] jUCMNav De/Re
7] DECIMAL, PLFaultCAT De
[17] FIFramework De
[9] Aspect miner tool De
[81] FORML2Alloy De
[§] SCADE, VIATRA De
[11] ABC toolset De
[28] DOME tool, IBM’s Rat. Req. Pro, RPM Package Manager Re
27] DECIMAL tool Re
[14] type checker tool, CADiZ Ae
[6] SpeK, FeatureHouse, ESC/Java2 and Simplify Dsc
[25] SPL Conqueror Dsc v
[3] FeatureHouse Dsc v
[4] SPLVerifier, FeatureHouse, CPAChecker, JAVA PathFinder Dsc v
[82] TypeChef Dsc v
[100] iGen Dsc/runtime v/
[50] VarexJ Dsc/runtime v
[24] AHEAD Tool Suite Rsc
[21] modified CIDE, FMCA Asc

approaches: (i) disabling properties inside a feature [2]; (ii) change feature order [98,
5]; (iii) feature exclusion, precedence and adaptation [54, 27]; (iv) addition of features
and relations, feature composition [28]; and (v) feature prioritization [54, 20]. These
strategies are usually supported with alloy specifications, goal, aspects, decision, UML,
and dependency models.

Source code resolutions (Rsc), as the name says, propose fixing interactions problems
on code. We also identified five strategies, as follows: (i) feature behavior changes [26];
(ii) moving code between features [26]; (iii) multiple feature implementations [26]; (iv)
conditional compilation [26], coloring code [29], annotations [97]; and (v) refactoring
derivatives [30, 24, 26, 10].

In addition, four out of thirteen resolution approaches also presented how to detect
interactions. The remainder assumed that the interactions had already been identified and
did not provide details of the identification process. Regarding the programming language,
similarly to Dsc, the Rsc approaches worked with C, C++, and Java. The latter was the
most common programming language used in both Dsc and Rsc approaches.

Analysis approaches. Finally, early analysis (Ae) and source code analysis (Asc)
represented the category of studies that neither detected nor resolved interactions, but
presented ways to improve modeling [21, 19], requirements specification [14, 55] and source
code derivatives [21]. The latter discussed derivatives with AHEAD and AST.

3.3 DISCUSSION 39

3.3.2 Tools and validation

Most approaches predict interactions based on the behavior of features and products
expressed in a set of states, transitions [13, 81, 7, 98, 11, 8] and model checking [22, 17,
2, 23]. Many of them are supported by tools that treat features as formal expressions,
such as model checker-based tools [81, 2] and SAT solvers [17, 11]; critical pair analysis
tool [98], or even specific requirements design, analysis tools [7, 8] and aspect-based tools
9, 5].

In addition, Dsc and Rsc approaches are mainly dependent on implementation alter-
natives to find solutions for feature interaction problems, such as design patterns [12],
feature modules and derivatives [30, 24, 26, 29, 3, 101], and code annotations [4, 29, 10].
Five out of ten Dsc approaches and one Rsc were assisted by tools to support the im-
plementation process, as for example: FeatureHouse?, AHEAD Tool Suite?, CIDE* and
SPL Conqueror®.

Table 3.6 shows the primary studies, corresponding tools, and feature interaction solu-
tion category. In general, 60% of early-stage approaches (De, Re and Ae) were supported
by tools [14, 81, 7,9, 28, 17, 98, 11, 2, 8, 5, 27] and 50% of source code papers (Dsc, Rsc
and Asc) presented tools to assist their approach [82, 25, 21, 24, 4, 6, 3].

Although some approaches were supported by tools, only a few of them presented
detailed empirical assessment methods [25, 3, 4, 82|, as Table 3.6 shows. Actually, detailed
methods were only presented in source code approaches, usually through a mix of real
and toy SPL. For example, Apel et al. [3] conducted an exploratory study on the basis
of ten small JAVA systems with existing specifications. Conversely, Rodrigues et al. [82]
analyzed 40 industrial families written in C.

Early-stage approaches (De, Re, and Ae), even those ones supported by tools, pre-
sented evasive experimental results. Most of them aimed to exemplify the approach or
present a proof of concept. In general, only 17% of the total studies conducted a proper
and detailed validation. It is noticed that performing empirical studies is still challenging
in the software systems field.

3.3.3 Domains

The feature interaction problem has been discussed in the telecommunications domain
for years. During the 80’s, the concerns of the telecommunications community revolved
around the future. The community was looking for a fast introduction of new features
in the systems as well as a smooth separation of applications from the system. This
is currently referred to as modularization, components development, or even feature-
oriented development.

Figure 3.10 shows the four most common domains regarding the paper’s publication
year. The study of feature interaction in phone systems and telecommunications is still
present in recent years, as well as other domains, such as databases, email, and graph

2http://www.infosun.fim.uni-passau.de/spl/apel /th/

3https:/ /www.cs.utexas.edu/users/schwartz/ATS.html

4http:/ /wwwiti.cs.uni-magdeburg.de/iti_db/research /cide/
Shttp://www.infosun.fim.uni-passau.de/se/projects/splconqueror/

40 SYSTEMATIC MAPPING STUDY

Automotive e o o o o o
Email — €) €@ (2) (1)
Database o o o o Q °
Phone Sys
and Telecom a o o o° 0
2003 2005 2007 2009 2011 2013 2015 2017 2019

Figure 3.10: Domains over time.

systems. Furthermore, Figure 3.11 presents the most common domains addressed by
research, from three perspectives: (i) approaches, domains, and amount of studies; (ii)
approaches, FOSD phases, and amount of studies; and (iii) approaches, domains, and
FOSD phases. Domains spread over both early and source code approaches have broader
coverage in relation to software lifecycle phases, compared to approaches concentrated on
only either early or source code stage.

On the one hand, telecommunication and phone [28, 30, 11, 19, 2, 29, 27], email
[22, 4, 10, 23, 3], graph [12, 21, 4, 2, 3], and network [14, 2, 10, 3] systems involved activities
in all areas of the lifecycle, such as: (i) FDA: requirements analysis, feature modeling,
automatic reasoning; (ii) FDD: formal specification, model checking, Alloy; (iii) FDI:
implementation techniques, modules, aspects, design patterns; (iv) FPC: composition,
feature selection. On the other hand, automotive systems did not involve FDI activities,
as well as smart homes, which did not consider neither FDI nor FPC activities. Due
to difficulties to create real test cases to automotive systems and smart homes, feature
interaction approaches usually identify interactions through simulations based on models
and specifications.

Despite early detection (De) having twice as many studies compared to source code
detection (Dsc), both categories are the ones with the most variety of domains. Although
Dsc has fewer papers, they deal with a greater number of different domains in their
approaches. While 12 out of 16 De papers discussed their approaches in 1 domain, almost
all Dsc papers (except 1) worked with at least 6 domains. For example, Rodrigues et al.
[82] performed an empirical study covering 37 domains with different industrial software
families.

Conversely, De papers are usually tied to their own field of study. For example, Hu et
al. [15] proposed an ontology-based approach that is specific to the smart home domain.
A discussion on whether it is applicable to a different domain is missing. The same occurs
for [55, 7, 16, 18, 8, 5]. Accordingly, the modeling and specification approaches of the De
category are usually more specific and may be less generalizable than the Dsc approaches.

Even when the authors claimed their approaches could be generalized to other areas,

3.4 THREATS TO VALIDITY 41

APPROACH

O @ - @ o
Asc G o
o °c@0c0 ©O-
000 000 -

oo 0-00

Py
73]
(]

Elevator
Game

File compressor
Network
Smart home
Automotive
Graph
Email
Database
FDA
FDD

FDI

FPC

Phone Sys. and Telec.

DOMAINS FOSD PHASES

Figure 3.11: Approaches, Domains, and FOSD phases

the studies do not discuss how relevant the results would be for other contexts; there is no
discussion about the implication of the results achieved for other application domains, nor
any discussion about possible and potential limitations of using the proposed approaches,

which limits any inference in this sense.

3.4 THREATS TO VALIDITY

There are some threats to the validity of our study. They are discussed next:

e Internal Validity. The literature search was in part guided by keywords. This is
not ideal for our topic, since the words used for describing it are used in other fields
with a very different meaning. This is reflected by the large number of irrelevant
responses to our queries, that has been carefully sorted manually. Conversely, it
is possible that some studies of a related topic in a different field use a different
vocabulary, and would thus have been missed. We used snowballing to recover some
references that could have been missed by the keyword approach.

Construct validity. Research questions may represent a threat in systematic stud-
ies. In out case, our research questions are relatively general, since the goal of this
study is to give an overview of the field. There may be a set of more specialized
research questions to explore in further research. Another threat is related to the
decision of which studies to include/exclude. To minimize this threat the processes
of inclusion and exclusion were piloted by two researches.

The papers have been classified by one researcher mainly, with the other researchers
verifying the adequacy. This threat is known as subjectivity bias. However, we

42 SYSTEMATIC MAPPING STUDY

contacted the papers authors in cases of disagreements or questions. The procedure
performed in this study has a compromise in terms of effort and objectivity.

e External validity. Publication bias is a common threat. Our study is limited
to approaches published in the scientific literature. There may be another set of
approaches, as important as those analyzed in this investigation, which has not been
published as regular research papers, in particular when developed inside companies
that cannot be published for strategic reasons. Another bias is the restriction to
publications in English. Since the field uses mainly English, the introduced bias is
minimal.

3.5 ADDRESSED GAP AND DIRECTIONS FOR FURTHER RESEARCH

Early detection (De) has over twice as many studies compared to source code detection
(Dsc). In addition, De approaches may not be able to identify all concrete interactions,
because many of them can only be detected with the software source code. De approaches
are basically based on models. Although Dsc approaches are commonly reported in the
literature, they present many disadvantages, such as the large amount of interactions that
can be detected, which may include many false positives.

As discussed in Section 3.3.1, detection approaches (both De and Dsc) are mostly
specification-dependent. They usually require an expressive number of specifications and
variant combinations, which are usually defined manually. Commonly, they need a costly
and formal specification of features, products or dependencies. However, software speci-
fications are usually either missing or incomplete in the software industry.

The approaches that do not use specifications to detect interactions are based on
the running software. Nguyen et al. [100] and Meinicke et al. [50] proposed dynamic
approaches to detect feature interactions. Both studies identify where features interact,
but they do not provide a way to distinguish from the set of interactions which ones are
problematic to the system. They just provide the total of possible interactions, without
any clue to which interactions may represent a risk to the program’s behavior. Features in
software systems are likely to interact many times and in many different ways. Showing the
places where all features interact do not provide sufficient insights to support developers
to find and fix problems. In addition, since those approaches focus on other aspects (code
coverage [100] and configuration complexity [50]), they present much more information
that is not related to the interactions of features. Thus, it gets hard to understand which
features are involved in the interactions and how to fix the problems.

Often, detection strategies are partial and only address specific points of a feature
interaction investigation. On the one hand, when interactions are detected, it is not
possible to identify which interactions are causing problems. On the other hand, if they
are resolved with a specialized module or implementation changes, the previous step on
how they came up with those interactions is not explained. Particularly, those work do
not explain how they distinguish the desired interactions from the problematic ones. In
our investigation, we observed that most of the approaches provide limited experimental
results, rarely perform effective and detailed case studies.

Based on the yielded results from this mapping study, we propose a dynamic analysis

3.6 CHAPTER SUMMARY 43

of systems able to: (i) identify interactions without depending on software specifications;
(ii) present a friendly, clean, and interactive interface to show which features interact for
each interaction; and (iii) support developers to distinguish desired (benign) interactions
from the problematic ones; Tool support could also assist developers to implement features
by informing at runtime which types of interactions they have, and the specific conditions
that interactions are triggered, such as inputs and variables. Along this idea, we aim to
analyze interactions from the running software and provide insights to the developers to
help them identify interactions that lead to a bug. We present the details of our approach
on next chapters.

3.6 CHAPTER SUMMARY

In this chapter, we presented a systematic mapping study to investigate the state-of-
the-art of feature interactions in SPL engineering. The 40 included primary studies were
classified according to their proposed solutions (RQ1), feature interactions types (RQ2),
software lifecycle (RQ3), software domains (RQ4) and empirical assessment methods
(RQ5).

More than 60% of the studies either provided an initial discussion about feature in-
teraction management or discussed how to identify interactions at early phases of the
SPL development, mainly based on traceability, dependencies, verification of Alloy as-
sertions, feature exclusion, precedence, and adaptation. In addition, the set of existing
approaches is strictly dependent on software specifications and generally provide limited
experimental results, rarely perform effective and detailed case studies.

Next chapter presents our dynamic approach to identify interactions. We aim to over-
come some of the drawbacks identified in the detection approaches, such as: we do not
need specifications to detect interactions, and we detect real interactions which come
from the software execution.

PART Il

A DYNAMIC ANALYSIS APPROACH
WITH VARXPLORER

Chapter

ON THE DETECTION OF FEATURE INTERACTIONS

The goal of this chapter is to introduce the process responsible for dynamically detecting
interactions in highly configurable systems, which is based on wvariational execution. We
provide an inspection process that provides developers with an easier means to distinguish
intended interactions from interactions that may lead to bugs.

Thus, to detect feature interactions in a test execution (without knowing whether
they are benign), we use the variational interpreter VarexJ [49, 50]. It performs varia-
tional execution to simultaneously execute all system configurations. VarexJ reveals the
differences among configurations on both control and data flow [50].

In this chapter, we introduce the basic concepts of multiple executions and variability-
aware execution. Thus, the chapter consists of six main sections, as follows:

Section 4.1 presents the motivation of this detection process;

Section 4.2 shows a running example;

Section 4.3 discusses how specifications can support the detection of interactions;
Section 4.4 presents the different strategies to detect interactions;

Section 4.5 shows details about the dynamic approach we use to find the interactions,
which is based on variational execution;

Section 4.6 finally presents VarexJ, the variational interpreter we use to run the sys-
tems;

4.1 WHY SHOULD WE DETECT FEATURE INTERACTIONS?

Often, the software development team needs to deal with unexpected system behavior due
to interactions between features. Features developed and tested separately may present
a different behavior when combined in a system [84]. A feature interaction is observed
when the combined behavior of two or more features differs from the individual behaviors

47

48 ON THE DETECTION OF FEATURE INTERACTIONS

of both features [103]. For example, one feature can interfere with, enable, or overwrite
the effects of another feature.

Features are frequently combined to cooperate and contribute to an intended be-
havior (expected interactions). However, most interactions cannot be predicted upfront.
Unexpected interactions can be classified as either benign or problematic to a system.
Problematic are undesired feature interactions that may cause faulty or damaging sys-
tem behavior, such as crashes. However, most interactions, although unexpected, may
result in a benign behavior that does not cause any problem to the system or might
even be essential to coordinate the functionalities of multiple features. Identifying and
classifying feature interactions is challenging as they only appear in certain test cases and
configurations (variants of a system composed of different feature combinations).

4.2 RUNNING EXAMPLE: WORDPRESS

Listing 4.1 shows an example illustrating both benign and problematic behavior. In the
code excerpt modeled after WordPress!, an extendable blogging and content management
system, the features weather and fahrenheit interact intentionally to display the weather
information in a desired format. However, the feature smiley interacts with the feature
weather in an unintended way, although they do not crash the system. When they are
together in the same system, the temperature is not showed and the system presents an
unexpected output. In some executions, as smiley replaces a part of the weather tag,
the feature weather has no effect if smiley is selected. Thus, instead of the ”[:weather:]”
tag be replaced by the current weather (e.g., 70°F), it is rewritten to ”[:weather®” and
presented to the user in place of the temperature.

Figure 4.1 shows the output of two configurations. For Configuration 1 (weather-
fahrenheit), the current temperature is shown to the user, indeed. However, for Configu-
ration 2 (weather-smiley), a HTML tag is shown and the user cannot see the temperature.

4.3 FEATURE-BASED SPECIFICATIONS AND GLOBAL SPECIFICATIONS

Detecting all feature interactions requires having specifications for all system configura-
tions. However, this usually does not scale to a large number of possible configurations.
Another strategy is to specify features in isolation; a feature-based specification describes
the behavior of a feature in isolation without any explicit reference to other features [37].
Such behavior is supposed to be preserved independent on other features in the system.
For example, a feature-based specification for the feature Smiley (Listing 4.1) is that a
specific composition of characters in the HTML must be changed by a smiley image?:

AG createHT M L(c) = c.contains(“:]") R c.contains(“smiley.png”)

Lihttps:/ /developer.wordpress.org/;,

2AG states that the proposition must hold globally for all execution paths. The operator R states
that the proposition to the left must hold until (and including) the state described by the proposition to
the right has been reached [3].

https://developer.wordpress.org/

e
= O © 0 NOUA W N

NN NN NN NN e e e 2 e
0 NS GE W RO © O oA W N

4.3 FEATURE-BASED SPECIFICATIONS AND GLOBAL SPECIFICATIONS 49

Listing 4.1: Simplified WordPress example [50].

boolean STATISTICS, SMILEY, WEATHER, FAHRENHEIT, SECURE_LOGIN;

void createHtml(String c) {
c = wpGetContent ();
if (SMILEY)
c = c.replace(":]1", getSmiley(":1"));
if (WEATHER) {
String weather = getWeather ();
¢ = c.replace("[:weather:]", weather);
¥
String head = initHeader ();
print ("<html><head>" + head + "</head><body>");
if (STATISTICS) A{
int time = getCurrentTime ();
printStatistics (time);

}
print ("<div>" + c + "</div>");
String foot = wpGenFooter ();

print ("<hr/>" + foot + "</body></html>");
}

String getWeather () {
float temparature = 30;
if (FAHRENHEIT)
return (temperature * 1.8 + 32) + "°F";
return temperature + "°C";

}

Several approaches work with feature-based specifications to detect interactions. Li
et. al [44] present a model checking approach to detect interactions automatically given a
group of feature specifications. The approach tests CTL (computation tree logic) proper-
ties of features to identify cases in which the specification is violated. Apel et al. [45] also
propose a technique to verify whether specifications hold across system configurations.
To perform this verification, specifications for intended interactions may be needed, and
each feature requires a formal specification of its behavior.

With feature-based specifications, interaction faults can be detected when a feature
specification is violated in a configuration. In practice, nevertheless, it is uncommon to
create specifications for all features. In general, approaches based on feature specifica-
tions present two main drawbacks: (1) from the whole set of features, it is not clear which
combinations of features need to be verified and (2) verification tools need precise speci-
fications to check against, information that developers are often reluctant to prepare or
unable to accomplish.

Conversely, global specifications represent a widespread strategy to reduce the effort
of creating specifications for individual features or specific program variants, since they
cover all configurations using general requirements [37]. Typical global specifications are
requirements that the system should not crash and that fulfills certain functional require-
ments in all configurations (e.g., passes all test cases). For the WordPress example, a
global specification is that the HTML page must be correctly created and showed to the
user:

50 ON THE DETECTION OF FEATURE INTERACTIONS

Set of Features

L) g
Nl

— 1

Weather Smiley Statistics

lof &

Fahrenheit Login

Configuration 1: Features Weather and Fahrenheit Configuration 2: Features Weather and Smiley
' '
Weather \ Weather Updates: Weather \ Weather Updates:
It’s currently: 70°F.) It’s currently: [:weather
Fahrenheit Smiley

Figure 4.1: Example of two Wordpress configurations.

AG createHTM L(c) = isValidHT M L(c)

Global specifications only describe properties for all system configurations, and thus
cannot describe nuances of intended and unintended interactions to recognize if they affect
feature behavior. Generally, it is difficult to find bugs caused by unintended interactions
without any specification. In this way, despite their disadvantages, global specifications
provide a convenient way of detecting interactions. For that reason, many studies base
their approaches on that kind of specifications and focus on exploring the configuration
space [41, 49, 50, 51, 52, 46, 38|.

4.4 STRATEGIES TO DETECT INTERACTIONS

Highly configurable systems can be composed from a set of thousands of features (aka.
configuration options) [104]. For example, Eclipse has more than 1,600 plugins [31] and
the Linux kernel has more than 15,000 configurable options [32, 33]. This large set of
options may be combined in different ways, and developers should guarantee that all
valid combinations work properly.

Usually, a test may pass to a given configuration and inputs, but it fails if a parameter
is changed [41, 42]. Feature interaction bugs are hard to be identified, especially those
that do not lead the system to a crash, but cause a wrong behaviour. To detect them, we
would need to compare the executions of all system configurations. Feature interactions
are then manifested in the differences in data and in the control flow that depend on

4.5 VARIATIONAL EXECUTION o1

multiple features. However, executing one configuration at a time does not scale for large
and real software. The number of possible configurations can potentially be exponential
to the number of options/features.

Recent analysis focus on detecting feature interaction bugs from global specifications,
in which all configurations of a configurable system need to fulfill. Usually, these ap-
proaches check global specifications based on systematic sampling [38, 39, 40|, model
checking [44, 46, 47, 48], combinatorial interaction testing [41, 42, 43|, and variational
execution [49, 50, 51, 52].

Sampling approaches are able to detect configurations that fail, but do not detect
unexpected and undesired behaviors. Bugs that do not cause crashes might be as critical
as the ones that lead the system to fail. Besides that, sampling strategies usually do
not detect the interaction that causes the bug. In addition, static analysis [105, 106,
107] identify interactions based on estimated values, only. Although they do not need to
use program inputs as dynamic analysis do, static analysis tend to over approximated
potential interactions. Other studies execute configurations separately and use symbolic
execution as a strategy to identify interaction problems. For example, Reisner et al. [108],
measured the effect of interactions only on control flow, whereas variational execution
analyzes both control and data flow.

There is a lot of work to detect faults caused by feature interactions, as well as
techniques to resolve them. However, since specifications at the feature level are usually
missing, the above mentioned approaches may not detect all incorrect system behavior,
especially bugs not covered by global specifications and bugs that do not result in a
crash or other easily observable behavior. Furthermore, variational execution: (i) provides
dynamic analysis of the software; (ii) presents control and data flow interactions; and (iii)
provides concrete variable values to each possible configuration.

4.5 VARIATIONAL EXECUTION

Variational execution approaches provide multi-execution to synchronize similar concrete
executions [50]. We can run the program with multiple inputs to understand how the
differences affect program behavior. The main goal is to execute a test case exhaustively
over all configurations of a software product (i.e., all combinations of features or inputs).
Since many executions of a system are similar [49], we do not need to run all the possible
configurations in separate.

For variability-aware execution, we require an interpreter as basis. A variability-aware
interpreter is a technique that uses multi execution to overcome the exponential explosion
of feature combinations. In practice, it runs the code that is common just once. When
it finds a configuration option, it opens multiple branches. Therefore, for the parts of
the program that are only executed under specific conditions, the interpreter will execute
these parts only under these conditions. After executing those parts that are different,
and for the next step, different software configurations may have the same instructions
to be executed. A variability-aware interpreter attempts to continue the execution of the
rest of the code again only once if possible.

In general, variational execution runs all program configurations, often efficiently, by

52 ON THE DETECTION OF FEATURE INTERACTIONS

1
2 boolean STATISTICS, SMILEY, WEATHER, FAHRENHEIT, SECURE_LOGIN;
3
4 void createHtml(String c) {
5 c = wpGetContent ();
6 if (SMILEY)
7 ¢ = c.replace(":]", getSmiley(":1"));
8 if (WEATHER) {
9 String weather = getWeather();
10 ¢ = c.replace("[:weather:]", weather);
11 }
12 String head = initHeader();
13 print ("<html ><head>" + head + "</head><body>");
(a) Source code
SMILEY=0 SMILEY=1 SMILEY=0 SMILEY=1 SMILEY=0 ~ SMILEY=1 SMILEY=0 SMILEY=1 SMILEY=a ? true : false
WEATHER=0 WEATHER=0 WEATHER=1 WEATHER=1 WEATHER 0 WEATHER=0 WEATHER=1 WEATHER=1 WEATHER= 8 ?true : false

B

¢ = “[:weather:]" |

12

4

c= [weather@ | |c “[:weather®” |

—a«
—a-

c= [weather] |

c “[:weather:]" | | ¢ = “[:weather:]"

M
M

]
173
=
E
m
2

I c= [weather@ I | c= a?‘[:weather®":“[:weather]"

YIHLYIM
YIHLVIM -

(b) Recording (c) Alignment (d) Sharing

Figure 4.2: WordPress example being executed with a traditional approach (recording)
versus the variational execution (sharing). This code focus on two options: smiley and
weather (the number on the elements indicate the line number).

sharing redundancies of the executions and values among these configurations [50]. The
main idea is to split the execution when the code presents differences and to join again
when it has to execute the same code.

Figure 4.2 shows how this process works for the WordPress example. In order to make
it simpler, we are focusing on just two options: smiley and weather (Figure 4.2a). For
this example, depending on the conditions smiley and weather, there exists four execution
paths, as Figure 4.2b shows. The number in the nodes indicate the line number in the
program. Figure 4.2c shows the same four executions aligned by the line numbers to clarify
the differences among them. We see, for example, that in all the executions, lines 5 and
6 are always executed. In turn, lines 7 and 9 are only executed in certain configurations.
Line 7 is executed when smiley is true, and line 9 is executed when weather is true. Figure
4.2d shows how the variational execution works: a single run sharing all common parts
among the executions and showing the differences applied for the corresponding partial

4.6 VAREXJ 53

configuration space (e.g., configurations where weather is true).

Variational execution preserves information about the effect of inputs on control and
data flow, and also shows the conditions on variables. It is able to scale to large configu-
ration spaces due to its aggressive sharing abilities of redundancies among the executions
of all configurations. As data and control flow are shared, we are able to observe feature
interactions in the differences of the execution and assignments of data [50].

4.6 VAREXJ

In this work, we consider any state difference in a system that depends on more than one
feature as an interaction, even if it does not cause a crash or any observable behavior
differences. Such interactions describe fine grained internals of the system which may
often be benign. Still, some of them can indicate faulty or unexpected behavior, such as
an interaction among features that overwrite the same variables.

For the variational execution, we used and extended the variational interpreter VarexJ
[50]: it is the only dynamic analysis for Java that tracks interactions on data and control
flow during execution. VarexJ? is a variability-aware interpreter for Java bytecode based
on Java Pathfinder (JPF) v7.0. JPF* is an extensible software analysis framework for
runtime based verification purposes. In other words, it is a Java virtual machine that
executes a given program not just once (like a normal VM), but theoretically in all
possible ways.

Previous work on variability-aware execution [109, 110] also used JPF, but with a
different proposal. They used the model checking abilities of JPF to execute separate
paths (creating separate executions to each path). Conversely, VarexJ extended JPF to
handle conditional values and to share as much redundant instructions as possible, thus,
the software is executed just once but containing all possible execution paths. Figure
4.2d shows the conditional values for variable ¢, which may assume two different values
depending on the condition smiley.

VarexJ provides all interactions on data and control flow for a single test case in all
configurations. It also collects the presence conditions that add or change any functional-
ity during the execution. Presence conditions are propositional expressions over configu-
ration options that determine when a specific code artifact is executed [111]. We identify
two main types of presence conditions: (i) control-flow conditions, expressions that define
each path condition in a trace; and (ii) data-flow conditions, expressions responsible for
changing the value of a given variable.

A presence condition represents a state in a variational execution. In this way, different
presence conditions represent state differences between configurations. For example, ¢ in
Figure 4.2d can assume two values depending on the condition of smiley. The variable
¢ can be [:weather:] on the condition — smiley and [:weather® on the condition
smiley. A feature interaction occurs when the execution of a line of code depends on
two or more features. If this execution leads to a bug, we are dealing with problematic
interactions.

3VarexJ is available at: https://github.com/meinicke/VarexJ
4JPF is available at https://github.com /javapathfinder

54 ON THE DETECTION OF FEATURE INTERACTIONS

4.7 CHAPTER SUMMARY

In our work, we address the challenge of identifying feature interactions without upfront
existing specifications based on a dynamic analysis of software. Usually, real systems do
not provide all specifications of the system, such as global, feature-based, and feature-
interaction specifications. In addition, specifying systems requires effort and time that
people are not willing to spend. We suggest an approach that aims at identifying feature
interaction bugs without the need for specifications. We propose to inspect interactions
based on the execution of multiple configurations of a software system (from each given
test case).

Next chapter presents VarXplorer: our approach and tool to detect interactions from
the variational executional of a system.

Chapter

VARXPLORER

In this chapter, we introduce VarXplorer, an iterative analysis that inspects feature inter-
actions from the variational execution generated by VarexJ. Figure 5.1 shows an overview
of our approach: given a configurable system and a set of test cases, we detect interac-
tions and provide an incremental analysis of the relationship between features, illustrated
through a feature-interaction graph.

To further support developers in understanding the detected interactions, we analyze
control and data flow interactions to present additional indicators, such as the suppression
of one feature by another. We also mark each interaction with additional helpful informa-
tion, as for example the affected program variables. We present this feature-interaction
graph to developers for manual inspection. Based on this inspection, they may indicate
intended behavior and also select interactions as forbidden through the feature interac-
tion specification language (create spec.). For unintended interactions, developers may go
back and fix the problem in the code. The graph is then refined as more test cases are
run, while also taking into account the documented interaction specifications (apply on
next test case). Unlike global and feature-based specifications, interaction specifications
do not specify the behavior of the system or feature. Instead, they help developers focus
only on potential bugs by automatically removing benign interactions from the graph.

Thus, this chapter presents the details on how VarXplorer supports developers on the
detection of suspicious interactions. The chapter consists of four main sections:

Section 5.1 presents the overview of our approach;

Section 5.2 details the detection of interactions, which has 2 main steps: pairwise de-
tection and relationship analysis

Section 5.3 shows how we automatically create the feature-interaction language;
Section 5.4 discusses how a user interacts with the tool;
Section 5.5 presents plug-in implementation details; and

Section 5.6 concludes the chapter.

%)

o6 VARXPLORER

5.1 ITERATIVE ANALYSIS OF FEATURE INTERACTIONS: OVERVIEW

In Figure 5.1, we present an overview of our approach to incrementally analyze feature
interactions. Given a configurable system, we execute test cases (system inputs) looking
for feature interactions. The developer then explores which interactions are problematic.
We support them in the process with a feature interaction graph, a concise representation
of all (pairwise) interactions among features. Based on the variational execution of a
system, the graph provides a visualization of which features interact, in addition to present
their relationships and data context.

Only indicating which features interact (raw interactions) does not provide sufficient
insights for the developer to identify whether a certain interaction is benign or represents
a bug. For example, two features A and B may collaborate together to deliver some cor-
rect system behavior. However, under specific system inputs, the functionality provided
by B may be suppressed by A in an unintended way. To understand the relationship
between features, we propose to investigate the relation that a feature may have over
others, such as suppressing or requiring another feature. Interaction relationships may
additionally be associated with the data context of the interaction, as for example the
variables involved in the relation. The different values that a given variable may assume
can be a signal that something wrong occurred. Highlighting the variables involved might
help developers in identify problematic interactions.

Our interaction detection process is incremental in the sense that, based on user
inspection, the graph is automatically refined by removing benign interactions. This re-
finement is supported through a feature interaction specification language and ensures:
(i) that the user does not see benign interactions again in future iterations (i.e., when
executing other test cases); and (ii) that any newly detected unintended interactions are
flagged in the future. The goal is to incrementally remove intended interactions in order
to focus on unintended interactions.

Unlike global and feature-based specifications, that (respectively) represent the be-
havior of configurations and features, interaction specifications aim to point out that
there exists an interaction between two features, without the need to formally specify
its behavior. To make specifications easy to create, developers can mark interactions as
either allowed or forbidden through a right click on the line that connects two features
in the graph.

5.2 INTERACTION DETECTION

In the interaction detection process, we identify and analyze all pairs of features that
interact in a system. The input of the detection is a variational trace created from exe-
cuting a test case, and the output is the interaction graph presenting all the interactions.
Our current approach focuses on pair-wise feature interactions, which has been proved
an effective and practical method to test software [112, 113], specially with variational
execution, where higher-order interactions are less common in practice [50].

The creation process of the interaction graph has two major steps: pairwise detection
and relationship analysis. First, we identify the pairs of features that interact from the

5.2 INTERACTION DETECTION 57

User

System

Automatic
Fix problem o Creation of Spec.

Manual
Inspection
= in out
- ® &
Test Variational
cases i
execution Interaction Interaction Feature
Detection Graph Interaction
Specification
1 Apply on next test case I

VarXplorer

Figure 5.1: Overview of our approach to iteratively and automatically inspect feature
interactions with VarXplorer

variational execution and create a basic interaction graph. Then, we perform the relation-
ship analysis and refine the basic graph with additional information about the relationship
between features, including the underlying variables they affect, to produce the complete
interaction graph. This complete graph provides more details about how the features
interact, whose goal is to support developers to understand problematic interactions.

5.2.1 Pairwise Detection

For pairwise detection, we collect a set PC with all the presence conditions in data and
control flow present in the variational trace. PC contains all the conditions that shows
how the features interact in the system. Control flow conditions are path conditions of
the trace, and data flow conditions are formed by the conditions on each system variable.
From PC, we identify all pairs of features that interact together by finding feature pairs
that occur together in the same condition.

Given all conditions in PC, the set of features of a system (F), and the set of all
possible pairs of features in a system, relation I represents only the pairs that interact:

IcF x F (5.1)

Given a pair of features (f1, f2), we assume that there is an interaction between f1 and f2
if there is at least one presence condition p € PC in which fI and f2 occur simultaneously
as literals in p:

frp = f occurs as literal in p (5.2)
I={(fi,f) | pePCA (fr>p) A (f2>D)} (5:3)

o8 VARXPLORER

Main#createHtml() :
5 . i

Main#getWeather() - W
i

WaF _ - : ~ o _Wa-F
WiF T W
_.
— I
i
i
i
i
|
- .
|

Figure 5.2: Variational trace of the WordPress example showing interactions among fea-
tures. S: Smiley, W: Weather, F: Fahrenheit, T: Statistics.

From Equation 5.11 and 5.12, we are able to collect all pairwise interactions. We use
them to create the basic feature interaction graph, a simple visualization of all interactions
identified in the trace. Based on Equation 5.11, we can also determine the set of active
features (A) in a system, all the features that appear in presence conditions and are
responsible for the functionalities executed in the system, by:

A={f|pePCnh(frp)} (5-4)

For example, Figure 5.2 shows the execution of the WordPress program, corresponding
to the code in Listing 4.1. The figure shows the presence conditions identified during the
variational execution that add or change any functionality during the execution. Control-
flow conditions are showed as arrows and data-flow conditions are showed in the rounded
rectangles.

The WordPress (wp) example has five features: SMILEY (S), WEATHER (W), FAHRENHEIT
(F), STATISTICS (T), and SECURE LOGIN (L). PC,,, represents the set of presence condi-
tions of the Wordpress example. For our analysis, we collected PC,,, from the variational

5.2 INTERACTION DETECTION 59

D, @

requires

,f"\\\ LT
Lo oL

requires:

requires @
String weather

. ~)
(L) /suppresses: \Stringc
~~--7 IStringc
String weather
String ¢
| suppresses:
\ String ¢
\

\
O

(a) Basic Graph (b) Flow-based analysis (c) Variables detection (d) Variables analysis

Figure 5.3: Creation process of the WordPress feature interaction graph, generated by
VarXplorer. Solid black line: interaction. Dashed line: data flow interaction. Dashed line
around the feature: features that has no effect in the execution. Red arrow: suppress
relationship. Green arrow: require relationship.

execution showed on Figure 5.2, which contains eleven unique presence conditions, as
follows:

PC.p = {S, =S, W, =W, T,~T,W A F,W A —F,

WAFA=SWA—-FA=S-SA-W} (5-5)

Based on the above equations, we identified four active features A, and three inter-
actions I, in the entire set of presence conditions PC,,,, as follows:

]pr = {(F7 W)? (37 F)? (Sv W)}
Ay, = {SSW,F, T}

Figure 5.3a shows the basic graph for our running example, illustrating the interactions in
L. Although the program of Listing 4.1 contains five features, only three of them interact
with each other, as shown by the edges in Figure 5.3a. The other two are non-interacting
features; they either do not interact with any other feature during system execution (they
are activated but do not interact) or are not executed in any configuration related to the
current test case (they are not activated).

In our running example, the feature SECURE LOGIN (L) is not activated, L ¢ A,,,.
Thus, L does not appear in any presence condition and has never been executed as part
of the given test case (represented as a greyed-out dashed circle in the graph). In con-
trast, the feature STATISTICS (7") appears in the set of presence conditions, T € A,,,, but
does not interact with any other feature (represented as a solid-border circle). In general,
some features do not interact, because they cannot be simultaneously selected due to
constraints in the variability model, or their implementations are orthogonal [50].

The basic graph (Figure 5.3a) may support developers in the detection of incorrect
interactions. From the visualization, they can identify features that should not been
interacting, or even missing interactions. Although the basic graph shows which features
interact with each other, it does not provide enough insight on how features interact.
We further investigate pairs of features from the graph to determine relationships that
further describe the interaction. To support users in identifying problematic interactions,
we also analyze the variables involved.

60 VARXPLORER

5.2.2 Relationships Analysis

In the relationship analysis, we investigate each pair to determine the effect one feature
has on the other. In this step, we provide two complementary analysis: PC-based analysis
and data-based analysis. In the former, we explore presence conditions on control and data
flow to identify which relation a feature may have over the other (i.e., either suppress
or require other features). The latter is responsible for investigating variables that are
controlled by more than one feature. Thus, we identify feature relationships exclusive to
variables. For example, a feature f1 may not present an overall suppression on the feature
f2, but fI may suppress f2 in relation to a given variable.

A feature effect specifies under which condition does a given feature have an effect on
the trace. If a feature f1 has no effect on the trace, then the selection of fI never adds or
changes any functionality that was not present before [111]. In the basic graph of Figure
5.3a, the dashed feature L is not active and, therefore, L has no effect in the WordPress
trace. Inactive features never have an effect. To the other features of the graph, T, F, S,
and W (circles with solid lines), they have been executed and add functionalities to the
execution. For example, to feature STATISTICS (S) to have an effect on the execution of
Listing 4.1, the variable tZme must contain the current time and it has to be printed, i.e.,
lines 15-16 need to be executed.

In addition, we can analyze the effect of features on each other based on the suppress
and require relationships. For example, the effect of a given feature f1 is to have feature
f2 in the same execution. We define two effects, also called relationships, suppress and
require, defined as follows:

Definition 1. Let f; and fs be the two features of an interaction pair. We say that f;
suppresses fo when the suppressed feature fy has no effect if the feature f, is selected.

Definition 2. A feature f, requires feature fo when f; has an effect only if the feature
f2 is selected.

Relationship based on PC. We investigate each presence condition (on control and
data flow) to detect feature effects in interactions. The feature effect is given by analyzing
the effect of a given feature on the set of presence conditions. Formally, the effect of f on
a condition p is given as the function U(f,p), as follows:

U(f,p) = plf/True] @ p[f/False] (5-6)

The function U(f,p) give us the condition in which f has effect in p, using zor (®). A
feature f has no effect on p if enabling it (f as True) or disabling (f as False) it does not
affect the value of p; therefore f does not have an effect on selecting the corresponding
code fragment under the condition p. In other words, we say that feature f has no effect
in condition p if (f <« True) is equivalent to (f < False), where (f <« y)' means
substituting every occurrence of f in p by y. When changing the feature to false or true,
and the execution did not present any difference, it is because the feature has no effect
on that program.

Lp is implicit in this notation.

5.2 INTERACTION DETECTION 61

Otherwise, a feature f has an effect on p when enabling and disabling the feature in
p, it presents a different result at least for one configuration, which means that different
code fragments are executed. This method of verifying whether a feature is enabled or
not is known as unique existential quantification [111].

For example, to determine the effect of feature FAHRENHEIT (F') on the presence con-
dition W A F, we would substitute F' with True and Fulse, as follows:

UF,W AF) =
— plf/True) @ plf/False]
= (W A F)[F/Truel® (W A F)|[F/False]
= (W A True) ® (W A False)
=W @ False
=W
This confirms that on the code blocks that the condition (W A F') hold, F' has an
effect iff W is selected. Similarly, we can determine the overall effect of a feature g taking

in account all conditions in PC. In this way, we need to consider the disjunction of all
feature effects of g on each presence condition p € PC:

U(g,PC) = \/ U(g,p) (5-8)

pePC

The result of Equation 5.8 corresponds to the condition under which a feature g has an
effect on the whole system’s presence conditions. For instance, we can now determine the
the effect of F' on the whole WordPress execution, which is given by the disjunction of
all feature effects considering all the eleven presence conditions of the Wordpress (showed
on Equation 5.5). Thus, the effect of F' on the whole program is calculated as:

U(F,PC,,) ={U(F,S) v U(F,—S) v UF,W) v U(F,=W)v
U(F,T)v UF,-T) v UUF,WAF)v
UFW A-F)vUF,WAFA=S)v
U(F,W A —=F A —=S)vUF,—-S A —-W)}
U(F,PC,,) =W
In this case, it confirms that F' only has an effect iff W is selected, considering the
whole program, and not only one single condition. To identify explicit relationships be-
tween features (suppress and require), we can use the Equation 5.8. We say fo suppresses

f1 in an execution with presence conditions PC if and only if (iff) the result of the fol-
lowing equation is a tautology:

fo = —U(f1,PC) (5-9)

Otherwise, we say fi requires f, in a trace iff the result of Equation 5.10 is a tautology:

~f» = —U(f1,PC) (5-10)

62 VARXPLORER

For example, the effect of the feature FAHRENHEIT (F') on the WordPress execution results
in U(F,PC,,) = W. Thus, F requires W in order to have an effect on the system (i.e.,
-W = =U(F,PC,,) is a tautology). This behavior can be observed in Listing 4.1:
Line 25 is only executed when the decision in Line 8 is true, which calls the method
getWeather() in Line 8. Then, we see that I is a sub-feature of W. From the domain
knowledge, we know that this is an example of an intended cooperation in terms of a
require relationship between those two features.

In contrast, if F" would only have an effect iff =1, then W would suppress F (i.e., F'
would be blocked by W, which would be a bug). We perform the same analysis for each
pair of features to determine the effects of each feature in an interaction. This analysis
identify all cases of suppress and require relationships between features, which may sup-
port the user to find faulty behaviors, relationships between features that should not be
allowed.

Figure 5.3b shows the result of the relationship analysis based on PC for our running
example. It presents the feature effect analysis for all pairs in PC,,,. In this case, we only
found an explicit feature effect in the interaction (F, W), a require relationship. The other
two interactions, (S, F') and (S, W), did not expose any explicit flow relation. Although
S interacts with ' and W, they do not present any flow relationship in terms of require
or suppress interactions. To further explore additional relationships between features, we
complement the flow analysis with a data analysis.

Relationship based on data. In a highly configurable system, the same variable can
assume different values under different configurations. Features that do not directly inter-
act on the control flow may still interact by controlling the same variables. Conditional
variables are variables in which the values depend on more than one feature. Unexpected
data values may reveal bugs from unintended interactions on variables. Conditional vari-
ables can help developers understand if a feature changes a variable value incorrectly
under certain configurations, leading to a bug.

In the data analysis step, we perform two main tasks: (i) we present the data context
of interactions, based on the variables they interact on; and (ii) we analyze feature effects
on data to find feature relationships related to variables (e.g., a feature may suppress
another related to a given variable).

Context Collection. To analyze the context of data interactions, we investigate each
conditional variable and its context. A variable context is the set of conditions that affect
the value of one variable. From the variable context analysis, we can identify all pairs of
features that interact on the variable’s value. To identify feature interactions in variables
(data interaction), we consider the same Equation 5.12, but replace the set of presence
conditions PC with the context of a given variable.

Let ctz, be the context of a variable v. We assume that there is a data interaction
related to v (I.z—,) between the features fI and f2 if there is at least one presence
condition pc € ctx, in which fI and f2 occur simultaneously as literals in pc:

frpc = f occurs as literal in pc (5.11)

Lete, = {(f1, f2) | p € ctzy A (f1 > pc) A (f2 > pe)} (5.12)

5.2 INTERACTION DETECTION 63

The WordPress example has three variables (c, weather, and time), but just two
(c and weather) are considered as conditional variables. Since the variable time only
depends on feature T (Listing 4.1), it is not part of any data interaction. In contrast, the
context of variable ¢ (ctz,), for example, is composed of five different presence conditions,
presenting combinations among F, S, and W, as follows:

ctr, = {S, =S, W AF A =S WA—-Fn—=5-5A-W} (5.13)

Hctxc = {(F’ W)v (Sv F), (57 W)} (5'14)

The graph in Figure 5.3c shows all variables involved in WordPress’ interactions,
(S, F), (S,W), and (F,W). Figure 5.3c is the same graph of Figure 5.3b, but now addi-
tionally shows the variables. Equation 5.14 shows that the variable c is presenting in the
three interactions of our graph.

Analyzing Data Relations. From Figure 5.3c, the developer is able to inspect variables
that should be overwritten in an interaction, for instance. However, that graph does not
provide any information on how the features behave in relation to variables. For example,
we may identify cases where a feature is suppressed by another related to a given variable.
To help developers understand what is happening in each variable, we detect relationships
on variables and present them in the graph. Thus, we again investigate the feature effect
of each feature pair, but now only related to the presence conditions of the variable being
analyzed. Feature effect on data can be used to inspect each conditional variable and
identify the effect it causes in the relationship between two features.

The analysis of feature effect per variable is analogous to the effect analysis for the
entire set of presence conditions PC in Equation 5.8. The only difference is that in place
of PC, we use the context of a variable. For example, we can use the feature effect on
data to investigate the variables of Figure 5.3c: interaction (F, W) related to variables ¢
and weather; and interactions (S, F') and (S, W) related to variable c.

To investigate (S, W) according to ¢, we need to analyze the effect of both S and W
on the context of ¢. Thus, we need to perform two analysis: whether the selection of S
influences the value of ¢ and whether the selection of F' influences the value of ¢. This
analysis checks if one feature suppress or requires the other feature related to variable c.
For example, a given feature may only change the value of a variable when another feature
is not selected (suppress relationship). When a feature is not selected, it has no effect in
the program. Thus, in the analysis of effect on data, we also look for relationships.

In this way, to check the pair (S, W) according to ¢, first, we may check the effect
of feature W. Given ctz. as the set of conditions of variable ¢, we analyze the effect of
W according to ¢ creating a disjunction among all W effects of each condition in ctx,
(presented om Equation 5.13):

U (W, ctz,) = U (W, S) v U (W, =S) vUW, W A F A —=S)v
U (W, W A —=F A—=8)vU(W, =S A =W)
=-S5

As a result of the disjunction U.(W, ctz.), W has effect on (or influences) variable c iff
S is not selected (—.5). In other words, we may say that SMILEY (S) suppresses WEATHER

64 VARXPLORER

(W) in relation to variable ¢. When SMILEY is present in the configuration, WEATHER effect
is blocked in the program and, thus, WEATHER cannot override the value of variable ¢ as
it should. Second, for completeness, we check the effect of the other feature S on each
presence condition of ¢, U.(S9, ctz.), as follows:

U.(S, ctz.) = U(S,5) v U(S,—S) vUS,W A F A —=S)v
U (S, W A =F A =S5)vU.(S, =S A =W)

= True

The second analysis results in true, which means that S does not interact with an-
other feature to affect the value of c¢. Similarly, we can analyze the effect of feature
FAHRENHEIT (F) on the interaction pair (5, F) related to the variable ¢. SMILEY also
suppresses FAHRENHEIT (W) in relation to c¢. According to the code in Listing 4.1, the
variable ¢ only gets the temperature (either 89.6°F or 32°C) when SMILEY is not selected.
Therefore, SMILEY suppresses both WEATHER and FAHRENHEIT.

Figure 5.3d shows the complete feature interaction graph for our WordPress example,
for both relationship analyses provided by our approach. Figure 5.3d is an update of the
graph in Figure 5.3c, now also presenting the relationships per variable. Since those new
relationships do not cover all the information of a feature, but just the variable analyzed,
we call them partial relationships and they are represented as dashed directed arrows.

In summary, from the relationship analysis of WordPress based on both PC and data,
we found that F' requires W in PC, which means that F' is only executed when S is
also selected. Based on the domain knowledge, that case represents a benign interaction
between F' and W. Besides, S suppresses I in data (variable ¢): when both F' and S
are selected, the variable ¢ is not overwritten by F'. This last case may be an example of
a bug because wrong information is displayed to the user. Instead of seeing the current
temperature, users see the tag ”[:weather®”. Finally, we found that S also suppresses W
in variable c¢. Then, in the presence of S, W also does not overwrite ¢, which presents the
same wrong tag to the user.

5.3 INTERACTION SPECIFICATION LANGUAGE

The feature-interaction graph shows all the data and control flow interactions based on a
variational trace. The trace shows the differences among all configurations for a given test
case (specific system input). To better inspect all the possible interactions in a system,
the feature interaction detection should be applied over different inputs to achieve a high
system coverage. However, when applied over real systems, the graphs may present a
large amount of interactions and conditional variables. In addition, different graphs from
different test cases may share the same interactions. Although the input may be different,
some pairs of feature may interact in the same way, as for example, overwriting the same
variables with the same values.

Hence, we propose the feature interaction specification language. It helps developers
to either allow or forbid interactions in a configurable system. When allowing, they may
remove interactions from features that are intended to interact and present a benign
behavior, which ”cleans” the graph and can facilitate finding interactions that represent

W N O U R W N =

5.4 USER INSPECTION 65

<system name="WordPress">
<specification type="allow">
<require from="Fahrenheit" to="Weather">
<var name="weather"/>
<var name="c"/>
</require>
</specification>
</system>

Figure 5.4: Example of interaction specification to WordPress.

a bug. Otherwise, an interaction flagged as forbidden in a graph can be tracked throughout
all test cases executions to point out the cases when it may occur.

The interaction language is a lightweight strategy to indicate that there is an interac-
tion among features. It does not require a formal description of the behavior of systems
or features, as global and feature-based specifications do. Furthermore, those behavior
specifications are usually missing. Our language is then an alternative to automatically
support developers in detecting bugs. For example, they can right click on the graph to
specify that an interaction is intended, which is then automatically added to the specifi-
cation. In particular, specifications can be created according to three parameters: type,
relationship, and target, as follows:

Type = {Allow, Forbid}
Relationship = {Require, Suppress, Any}
Target = {Variable, Method, Class, Any}

The Type defines whether the specification either allows the interaction to occur or forbids
it. The former can be used to approve benign interactions that may be repeated in most
test cases of a system; and the latter can be used to flag features that should not interact.
Relationship and Target correspond to refinements of specifications. The relationship is
used to refine the specification in terms of suppress and require, and combined with a
Target, it is possible to allow or block interactions under the scope of a method, class,
or variable. Allowing any interaction between two features may be dangerous. Then, the
refinements are used to specify under which conditions two features present a benign or
faulty interaction.

5.4 USER INSPECTION

VarXplorer investigates interactions among features and helps users inspect unexpected
interactions. From the feature interaction graph, a user can view how features interact and
specify interactions. In the WordPress example, the developer can use the specification
language to specify benign behaviors (allow). For example, Figure 5.5 shows a screen-
shot of the feature-interaction graph produced by VarXplorer for the WordPress example.
Guided by the visualization provided by the graph, the user can automatically allow
the benign data interaction between FAHRENHEIT and WEATHER, for the variables ¢ and
weather. Figure 5.4 shows the allow interaction specification to this example. In this

66 VARXPLORER

@] @ VarXplorer: dynamic analysis of feature int...

T | [F |

requires ", suppresses
Lo Stringc

c . String c
String weatHer .

Feature Interaction: F-W e suppresses R
v Allow require on String ¢ . String ¢
Forbid require on String ¢ {

+ Allow require on String weather T
Forbid require on String weather

Apply Spec & See New Graph See Forbidden interactions

Figure 5.5: VarXPlorer screenshot of the Wordpress graph.

way, our interaction detection approach receives the specification and guarantees that
the intended interaction will not be shown again in the analysis of future test cases,
which reduces the tme of analysis. The interaction between FAHRENHEIT and WEATHER is
only shown again in subsequent test cases if they interact in a different way, such as on
different variables or through a different relationship.

Conversely, in the other two interactions of the WordPress example (SMILEY-WEATHER
and SMILEY-FAHRENHEIT), one of the features in each interaction is being suppressed by
the other, which may represent a bug. In case of bugs, the user may want to fix the problem
directly in the code and also mark those interactions as suspicious in the graph, by means
of the forbid specification, as Figure 5.5 shows. Thus, if the same interactions reappear
in other test cases, our tool will point them out as potential problematic interactions.

Our tool was developed to work incrementally in case of developers have a set of dif-
ferent test cases to execute. VarXplorer runs each test case at a time and before showing
the corresponding interaction graph, it asks developers whether they want to apply pre-
vious specifications on the new execution, as Figure 5.6 shows. Hence, the tool is able to
read previous specifications and apply the changes: either removing benign interactions
or highlighting forbidden interactions, if any.

To support developers when using the VarXplorer plug-in, it also has two additional
buttons, as Figure 5.5 shows. The first one, “Apply Spec & See New Graph”, allows users
to apply the options selected in the graph related to either allow or forbid interactions
(interaction specifications). When pressed, it shows how the graph meets the specifications
applied. The second button, “See Forbidden interactions”, shows the list of previously
forbidden interactions to that system.

5.5 PLUG-IN IMPLEMENTATION

VarXplorer analyzes highly configurable programs developed in Java. Therefore, our tool
needs to know which are the features of the program. Thus, features are annotated as

5.5 PLUG-IN IMPLEMENTATION 67

o Select an Option
% Do you want to apply previous specification?
Cancel No [Nes

Figure 5.6: VarXplorer window to confirm the use of previous specifications.

conditional values in the program. In this case, features are represented as static Boolean
variables (two states, true and false). To be understood by the variability-aware inter-
preter, each feature variable should be initialized as conditional using the annotation
@Conditional. The jpf-annotations library is used to annotate the JAVA code. Figure
5.7 shows an example of a feature variable. Although a feature is always initialized as
true, the interpreter replaces the initial value by a choice: whenever the field FEATURE is
used it can assume both values, true and false, depending on the current context of the
execution.

@Conditional
public static boolean FEATURE = true;

Figure 5.7: Annotated feature variable in JAVA.

VarXplorer is an Eclipse plug-in to detect interactions and graphically show them. It
produces a graph that represents interactions and relationships between features. VarX-
plorer analyzes control and data flow information from the variational execution provided
by VarexJ. The tool is publicly available online at GitHub?. The repository contains all
sources required to execute the tool.

VarXplorer extends VarexJ in 6 packages, 33 classes, and 2234 LOC in total. The
packages are shown on Figure 5.8 and described as follows:

e interaction: the core of VarXplorer and the interface between VarexJ and the new
features provided by our tool. This package contains 8 classes.

e interaction.view: the user interface of VarXplorer. It contains 11 classes.

e interaction.types: it groups 3 classes that defines types of interaction, i.e., data
flow interactions and control flow interactions.

e interaction.dataflow: it controls data flow interactions. This package is composed
of 4 classes.

Zhttps://github.com/larirsoares/VarXplorer

68 VARXPLORER

¥ (2 src
> {4 interaction.view 877
> tH interaction.types 92
> 4 interaction.spec 311
» {1 interaction.dataflow 241
> 4 interaction.controlflow 122
> 4 interaction 591

Figure 5.8: VarXplorer packages and LOC

e interaction.controlflow: it controls control flow interactions and has 1 class.

e interaction.spec: it contains 6 classes responsible for creating and managing spec-
ifications.

For the visualization, VarXplorer is currently using the JGraphX library?. It provides
functionality for visualization and user interaction with node-edge graphs (not charts).
Furthermore, to deal with specifications, we transform user mouse events on a XML file,
as presented on Figure 5.4.

For reasoning about features, VarXplorer uses a feature expression library, named
FeatureExprLib* of the TypeChef [114]. The library allows to easily express and reason
about expressions in propositional logic, integrated with a SAT solver and Binary Decision
Diagram (BDD). 5 It supports also parsing feature expressions and loading entire feature
models (in textual format or a .dimacs file). For reasoning, internally both BDDs and
SAT solvers are used which allows to scale reasoning even to feature models the size of
the Linux kernel [114]. VarXplorer use FeatureExprLib with BDDs for handling features.

VarXplorer collects all presence conditions generated during the variational execution,
and identifies which features appear together. For each pair of features, it analyzes sup-
press and require relationships. The Algorithm on Listing 5.1 shows how we detect pairs
and relationships. First, we use BDD to get the set of valid features (Line 4). From the
set of expressions (gathered from VarexJ), we identify each pair of feature that interact
(line 6). We also identify features that have no effect in the trace of execution (line 8).
Then, we combine the features in pairs to look for relationships (lines 10 and 18). This
investigation was explained on Equations 5.6 and 5.8, in which we analyze the effect of
each feature present in a given program (line 12). Finally, we check the implications to
detect relationships on a pair of features, described on Equation 5.9 for suppress and
Equation 5.10 for require, respectively shown on lines 24 and 25 in Listing 5.1. This
algorithm returns all pairs of features that interact and relationships, if any.

3JGraphX is a Java Swing diagramming (graph visualization) library, available at
https://github.com/jgraph/jgraphx

4FeatureExprLib is available at https://github.com/ckaestne/ TypeChef/tree/master /FeatureExprLib

SBDD is a data structure that is used to represent a Boolean function. On a more abstract level,
BDDs can be considered as a compressed representation of sets or relations.

5.6 CHAPTER SUMMARY 69

The method getExpressionsPairs presents the highest algorithmic complexity (line
6) with an approximated value of 0(e.n?). The literal e represents the number of
expressions and n represents the number of features. If the number of expressions is
close or higher than the number of features, the complexity of the method tends to
be cubic 0(n®) or even higher. Conversely, if the number of expressions is much lower
than features, the complexity presents a quadratic behavior (0(n?)). Since the method
getExpressionsPairs presents the highest complexity of the algorithm, the final com-
plexity is determined by this method.

The detection of relationships on variables (partial relationships) is similar to the
algorithm on Listing 5.1. The main difference is the set of expressions received by the
algorithm. For partial relationships, we run that algorithm for each variable, passing to
it the subset of expressions of the given variable. To find all the conditional variables, the
ones that depend on more than one feature, we extended VarexJ to collect variables and
their expressions during the variational execution.

5.6 CHAPTER SUMMARY

In highly configurable systems, features may interact unexpectedly, producing faulty be-
havior. We propose VarXplorer, an incremental and iterative lightweight process and
plugin to detect problematic interactions dynamically. From a variational execution, we
gather all the variability context (control-flow paths and shared data) in which each
instruction is executed to create a feature interaction graph. VarXplorer uses this infor-
mation as input to identify how the features are related to each other and helps users
to inspect unintended interactions. While analyzing the graph, users may indicate inter-
actions that present a benign behavior and also mark others as forbidden, through the
feature interaction specification language.

Next chapter presents detail about our first study, a controlled experiment to evaluate
our approach.

TR W N =

w

10
11
12

13
14

15
16
17
18
19
20

21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

70

VARXPLORER

Listing 5.1: Simplified algorithm for the detection of interactions and relationships

getInteractions (expressions){

featuresSet = BDD.getFeatures;//get the whole set of features

exprPairs = getExpressionsPairs(expressions);//get all the pairs that appear
together in expressions

noEffectlist = getNoEffectlist(features, expressions);//list of features that
do nmot appear in the expressions

for each featurel in featuresSet {//get the 1st feature for pair comparison

unique = createUnique (featurel, expressions);//get the effect of a given

featurel on the set of expressions

if (isContradiction(unique)) {//when a feature doesn’t appear in the

}

erpressions
continue;

for each feature2 in featuresSet {//get the 2nd feature for pair comparison

}

if (isTautology(feature2) {//when the feature is the feature model root

feature
continue;

}

suppressAnalysis = feature2.implies(unique.not());//checking the
implication for suppresion

requireAnalysis = feature2.not().implies(unique.not());//checking the
implication for requirement

pair = new PairExp(featurel, feature2);//creating the pair

if (suppressAnalysis.isTautology()) {

phrase = feature2 suppresses featurel;
}
if (requireAnalysis.isTautology()) {
phrase = featurel requires feature2;
}

if relationships were not found for a pair{

}

phrase = featurel and feature2 do not interact;

interactionList.add(pair, phrase);//adding pair and relationship in a list

}

return interactionlist;//final list of relationships

PART IV

EMPIRICAL STUDIES

Chapter

CONTROLLED EXPERIMENT: UNDERSTANDING
FEATURE INTERACTIONS WITH THE GRAPH

In order to understand how feature-interaction graphs provided by VarXplorer can help
users identify suspicious interactions, we performed a controlled experiment. This study
investigated and compared the ability of users to identify problematic interactions with
and without VarXplorer, in a setting with different tasks and systems.

The experiment was executed with 24 participants from different universities and com-
panies. We measured the effort to identify a buggy interaction based on the information
provided by the feature-interaction graph. We also performed a qualitative analysis based
on video and audio recordings, and post-treatment interviews. The results showed that
participants using VarXplorer outperformed participants using the state of the art tool.
From the qualitative analysis, we also identified and discussed 5 observations, including
how the feature relationships support identifying bugs.

This chapter consists of three major sections:

Section 6.1 presents the experimental design of our empirical study, such as research
questions, pilot study, participants, tasks, and procedure;

Section 6.2 discusses and analyzes the main findings of our empirical study,
Section 6.3 presents the threats to validity of our study;
Section 6.4 presents the related work; and

Section 6.5 concludes the chapter.

6.1 EXPERIMENTAL DESIGN

This section shows how we conducted the experiment. It presents details about research
questions, participants, pilot study, tasks, design and execution, as follows.

73

TACONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

6.1.1 Research Questions (RQs)

We investigate the usefulness of interaction graphs as a strategy to identify feature inter-
action bugs in programs. VarXplorer is an Eclipse plug-in that abstracts from multiple
executions to show feature relationships. To the best of our knowledge, there is currently
no comparable tool that is able to detect suspicious interactions based on a dynamic
analysis of relationships between features, without specifications.

One possible baseline could be to compare VarXplorer with a traditional source-code
inspection or the standard Eclipse debugger. However, we assume that inspecting the
code to detect interactions is hard, slow, and possibly a tedious work. On the other hand,
the standard debugger is a general-purpose tool that is not specifically designed with
feature interactions in mind.

Recent work already shows that Varviz, an Eclipse plug-in that provides a variability
aware execution trace of the code, outperforms the standard debugger for comprehension
tasks involving interactions [65]. Based on such previous findings, we compare VarX-
plorer to the current state-of-the-art tool in this area, VarViz. Like VarXplorer, Varviz is
an Eclipse plug-in. Varviz enables programmers to use variational traces for debugging
interaction faults. It provides a trace of execution, instead of code or debug. The Varviz
trace is present in Figure 5.2.

We aim to answer the following main question: Does VarXplorer help developers iden-
tify suspicious feature interactions?, which we split into two concrete research questions:

e RQ1: Does VarXplorer improve the performance of identifying suspicious interac-
tions compared to Varviz?

e RQ2: How does the interaction graph presented by VarXplorer help understand the
suspicious interactions in a program?

RQ1 is related to the effort required to identify suspicious interactions. We measured
the time spent to detect interactions in two setups: using VarXplorer and Varviz. For each
tool, we created two tasks for two different systems. We measured how long participants
take to identify and understand a suspicious/buggy interaction from the information
provided by (i) the graph generated with VarXplorer; versus (ii) the execution trace
created by Varviz.

To answer RQ2, we analyze what information helps participants understand and iden-
tify suspicious interactions. In addition, we want to know how the graph components (re-
lationships, variable arrows, and colors) can help developers with the detection of buggy
interactions.

6.1.2 Experiment Overview

We designed our experiment as a within-subjects study. For this design, the same group
of participants receives more than one treatment [115]. In this way, all participants per-
form tasks using both tools, VarXplorer and Varviz. The tools are the treatments of our
experiment.

6.1 EXPERIMENTAL DESIGN 75

Within-subjects designs have greater statistical power than between-subjects designs:
we need fewer participants in the study to find statistically significant effects, because
each participant is tested under all treatments. Within-subjects designs also represent a
good strategy when it is difficult to recruit participants [116].

The experiment consists of two tasks: participants first start with one tool and they
have to identify interactions in a given system. After finishing the first task, they start
the activities with the second tool and another system. For each tool, they use a different
task to reduce learning effects.

While the participants are working on the tasks, we ask them to verbalize their
thoughts and tell us what they are doing (think-aloud protocol [117]). When necessary, we
also ask them why they are doing a particular activity. The think-aloud protocol makes
the process as explicit as possible during the tasks, because it captures preference and
performance data simultaneously, rather than waiting until the experiments finishes to
ask all the questions. In addition, we record the screen and audio to collect supporting
data for analyzing the time and strategy used by participants to find interactions. We
run the experiment for one participant at a time.

We complement the above setup with a pre-questionnaire and a post-interview. Be-
fore the experiment, we ask them to answer an online pre-survey', which we used to
collect background data about their experience, mainly with Java and the Eclipse IDE.
We create balanced groups of participants based on their experience. In this way, related
to Java development, we have a mix of experts, intermediate, and beginners participants
in each group. For the post-interview, we asked two questions: (1) which tool is easier to
understand an interaction? and (2) what makes this tool easier in comparison to the other
one? We triangulate the gathered answers with the data we obtain from the think-aloud
protocol.

6.1.3 Pilot Study

Before the main experiment, we conducted two pilot studies with 8 graduate students
from two universities in different countries, Brazil and the US. We used the pilot study
results to determine the amount of time needed to execute our tasks. This allowed us to
estimate and plan the number of participants we needed in the main study. We found a
large effect size in the difference between the participants who used VarXplorer (3 min
on average) versus the ones who used Varviz (13 min on average), which suggests that
we do not need a large group of participants. The pilot study also allowed us to assess
whether the participants could properly understand the subject systems and the tasks
they should perform, as well as to train the researcher who overlooked the experiment.
We do not consider the results of the pilot in our analysis.

6.1.4 Participants

After the pilot, we recruited 24 participants (excluding pilots). To recruit them, we sent
emails to professors in two universities, from different computer fields, to suggest former

Tt is a Google Form document. We have a copy in the Appendix B.1.

T6CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

Table 6.1: Participants

Partic. Institution Position Group Exp. (years)

1 U1l M 1 >= 5 and <10
2 U1l PhD 1 >= 10

3 U2 Un & dev 1 >=1 and <5
4 Ul M 1 <1

5 U1l PhD 1 >=1 and <5
6 U2 Un 1 >= 1 and <5
7 U1l PhD 2 >=10

8 Ul M & dev 2 >= 5 and <10
9 Ul Un 2 >=1 and <5
10 C1 Dev 2 >=1 and <5
11 U1l M 2 >= 1 and <5
12 U1l M 2 >=1 and <5
13 Ul M 3 >= 5 and <10
14 C2 Dev 3 >=10

15 Ul M 3 >= 5 and <10
16 C3 Dev 3 >= 1 and <5
17 U1 Un 3 >=1 and <5
18 U1l Un 3 >= 1 and <5
19 U1l M 4 >= 5 and <10
20 Ul M 4 >= 1 and <5
21 U2 Un & dev 4 >= 1 and <5
22 C4 Dev 4 >= 5 and <10
23 U1l Un 4 >=1 and <5
24 Ul PhD 4 >=10

students (developers) and current ones.

We received 24 emails from three different profiles: undergrad students, graduate stu-
dents, and professional developers. Furthermore, some of the students are also developers.
The participants experience regarding Java and Eclipse IDE varied from few months to
more than 10 years.

Table 6.1 shows the participants involved in the experiment: 7 undergrad students
(Un), 9 master students (M), 4 PhD. students (PhD), and 7 developers (Dev). The
students are from two different universities (Ul and U2) and the developers work in
four different companies (C1, C2, C3, and C4). According to our design, we created four
groups with a similar background distribution of participants.

6.1.5 Experimental Material and Tasks

We used two product lines as the evaluation material: Elevator and Telephone.

The elevator system has been proposed by Plath and Ryan [88]. It is an extensible
elevator model whose features are designed to highly interact. For example, the elevator
needs to stop if it is empty or priority service for a special floor is activated. Although
this system has only 1046 LOC and 6 features, it is hard to understand the impact of its
features due to the interactions. Furthermore, it has been frequently used in the literature
[118, 119, 120]. We used the Elevator Java version from the SPL2go repository?.

The telephone system has been widely discussed in the literature due to the Feature
Interaction Detection Contest that was held in 1998 and 2000 [121]. The contest aimed
to compare various methods and tools for detecting feature interactions. To enable a

Zhttp://spl2go.cs.ovgu.de

6.1 EXPERIMENTAL DESIGN 7

comparison, the objective was to detect interactions among a given set of features for a
given telephone system. The telephone system was designed to present many interactions.
Based on the specification from the contest, we created a Java implementation for the
telephone system. We implemented 6 features and 1005 LOC.

We designed two tasks, one for each system. The tasks were designed to be similar
in size, number of features, and time to be executed. The pilots served to align them. In
general, we asked the participants to use the tool given to them (either VarXplorer or
Varviz) to identify suspicious interactions on the systems for a given test case. The tasks
were designed to present just one suspicious interaction for each system and a couple of
benign interactions. We provided the participants with the description of each feature in
the target system, test case scenario documentation, and the system’s source code?®. From
those artifacts, they get the domain knowledge about the systems. Thus, the participant
role in the experiment is to identify the problematic interaction in each system. We next
describe the details of the two tasks.

Task 1. According to the features specification, when the elevator has two thirds of
the maximum weight, it should not attend to calls until it delivers passengers, making the
weight be less than two thirds. However, because of a problematic interaction between two
features (Ezecutive Floor and Two Thirds Full), the elevator goes to pick a passenger up
even though it has already achieved two thirds of the capacity, which forces the elevator
to not close the door until someone leaves it. In this situation, the feature Ezecutive Floor
is blocking the execution of the feature Two Thirds Full. In this task, the participants
should figure out that this interaction leads the system to a wrong behavior. They have
to identify the suspicious interaction using either Varviz or VarXplorer, depending on
the group they were assigned. We request them to identify the problem, but we do not
require them to fix the problem in the source code.

Task 2. The contest instructions describe all the feature specifications [103], such as:
(i) Call Forward on Busy, all calls to the subscribing line are redirected to a predetermined
number when the line is busy; and (ii) Call Waiting, allows the subscriber to be noticed
that another party (incoming call) is trying to reach his number while her line is busy.
However, when the line is already busy and another number is trying to reach that line,
because of a precedence in the implementation, the telephone system is always forwarding
the call, even if the person wants to put the incoming call on waiting. Again, one feature
has its behavior suppressed by another and the participants should identify that this is
the suspicious interaction, by using one of the two tools.

6.1.6 Design

The tool used during the experiment represents an independent variable with two levels,
VarXplorer and Varviz. We also distinguish participants related to the systems they
use: Elevator system and Telephone system. Furthermore, to analyze the performance
of the tools (RQ1), we measured the time spent by participants to find the suspicious
interaction in each system. The time was measured based on the video recorded during
the experiment. Time is a dependent variable of our evaluation.

3The documentation and tasks description is in the Appendix B.2.

T78CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

Sy;temj
Elevator Telephone
N) 2 ¢
I aa Varviz VarXplorer &= 3
& i &
§ —_ <— 8
S VarXpl Varvi O)
arXplorer arviz PN
-

Figure 6.1: Latin Square to our treatments

Latin Square Design. Since participants perform two tasks, one followed by the
other, there can be problems of carryover effects. Thus, each measurement may depend
not only upon the treatment given but also on the preceding treatment [116]. To avoid
those kind of effects, we use a Latin Square design [122]. It represents a method of placing
treatments so that they appear in a balanced fashion within a square block. Latin Square
is an useful design where the experimenter desires to control variation in two different
directions. In this way, treatments should appear once in each row and column.

In addition to the standard Latin Square, we used three strategies to avoid learning
effects: (i) we have every treatment preceding every other treatment the same number
of times (counterbalanced Latin Squares); (ii) we change the order participants use the
tools; and (iii) participants do not repeat the same tool or the same system in different
tasks.

Figure 6.1 was inspired by the Latin Square to show the distribution of the population
to our experiment. The columns are labelled with the two subject systems (Elevator and
Telephone). The rows correspond to the developers. The 4 squares (cells) contain the
two treatments (Varviz and VarXplorer). Then, we allocated one group of participants
to each cell. Based on this design, each participant received the two treatments listed in
a given row for the two subject system listed in the corresponding columns.

Clearly, we can only have a participant looking for interactions in a given program
once, otherwise there would be a learning effect on subsequent attempts. Following the
strategies of our design, participants are using different tools and systems for each task and
they have never used neither the tools nor the systems before the experiment. Moreover,
since we permute the order in which they perform the activities, we create 4 groups,
as Figure 6.1 shows. We balanced the groups based on the participants experience. The
order of each group is described as follows:

e Group 1: first Varviz-Elevator, then VarXplorer-Telephone
e Group 2: first Varviz-Telephone, then VarXplorer-Elevator
e Group 3: first VarXplorer-Telephone, then Varviz-Elevator

e Group 4: first VarXplorer-Elevator, then Varviz-Telephone

6.1 EXPERIMENTAL DESIGN 79

6.1.7 Procedure and Execution

Before the participants receive their tasks, we first introduced the experiment with a
tutorial about feature interactions. The tutorial took 10 minutes on average. Then, each
participant had two tasks to accomplish, with descriptions and instructions provided for
each task.

Before each task, we conducted a warm-up section to introduce the tool (either Varviz
or VarXplorer) using a third system, the mock WordPress shown on Listing 4.1. For the
first warm-up, we give them Eclipse with the first tool (depending on the participant
group), the mock WordPress source code, and a list of features. At this point, they have
to identify the suspicious interaction in WordPress using the tool given to them. During
this warm-up, we answer their questions about the tool. After that, we give them the
first experiment task corresponding to that tool, which includes again the Eclipse with
the tool, the experiment system source code (either Elevator or Telephone) and the list
of features. Those steps correspond to the first part of the experiment.

The second part starts when the participants finish the first task. Hence, we perform
a second warm-up with the second tool and WordPress, where they again have to iden-
tify a suspicious interaction. After they finish the warm-up with the second tool, they
start to perform the second experiment task, which consists of identifying the suspicious
interaction in the second tool and the second system (either Elevator or Telephone). The
experiment finishes when they have performed both tasks, i.e., when they finish the judg-
ment about the interactions: whether they are benign or problematic. As final step, we
conduct the post-experiment interview. Figure 6.2 shows the experiment setup for each
group, and Table 6.1 shows the distribution of participants in the groups.

® 2 © @

Introduction Introduction Introduction Introduction
Part 1 Part 1 Part 1 Part 1

Warm-up 1: Varviz Warm-up 1: Varviz Warm-up 1: VarXplorer Warm-up 1: VarXplorer

'] AT T T T T e AmTmTTTTTTTT T
I

| Task 1: Telephone Task 1: Elevator

Task 1: Elevator i Task 1: Telephone

]
with VarXplorer E

I
with Varviz : with Varviz | I with VarXplorer
Part 2 Part 2 Part 2 Part 2
Warm-up 2: VarXplorer Warm-up 2: VarXplorer Warm-up 2: Varviz Warm-up 2: Varviz

aNTT T T T e GO TS T T T T T, anT T T T T T T e [t
[}

Task 2: Telephone i Task 2: Elevator i Task 2: Elevator Task 2: Telephone

L

[}
with VarXplorer ! with VarXplorer ! with Varviz i with Varviz
Interview Interview Interview Interview
Group 1 description Group 2 description Group 3 description Group 4 description

Figure 6.2: Description of the setup for each group.

To provide the same environment to each participant and avoid having to install and

S80CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

=] !
S
[[

= _

=

a 8 -

g uw T

i —_—

E -

.= o

= (=l I e—
™ I
g —
= | 1

Varviz VarXp

Tool used

Figure 6.3: Time results for the tools

configure Java and Eclipse parameters, we used the same laptop for all participants in
the experiment. Each group received two versions of Eclipse, one version with the Varviz
installed and the other one with VarXplorer, with two programs in the workspace, the
warm-up program (WordPress) and the experiment program (either Elevator or Tele-
phone). Thus, each Eclipse installation corresponds to a cell of our Latin Square design,
and we could make sure they would use the right tool in the right system.

6.1.8 Data Analysis

For the statistic analysis of our data, we conducted an analysis of variance using a within-
subjects ANOVA. It is a parametric test for determining whether significant differences
occur in an experiment containing two or more conditions. ANOVA has three assump-
tions: the dependent variable measures normally distributed interval, the population has
homogeneous variance, and each cell (Latin Square cell, in our case) contains an in-
dependent sample [115]. We used the Shapiro-Wilk normality test, the Bartlett test of
homogeneity of variances, and the Tukey HSD test to the multiple comparisons of means.
We conventionally reject our hypothesis when p-value < 0.05.

For the qualitative analysis, we watched the videos and listened to the audios (in-
cluding experiment and post-interview) looking for commonalities and differences in the
way participants execute the tasks and their perception about the tools. We transcribed
participants answers and informally generated codes to passages of the data which are
relevant to understand participants difficulties and meaningful differences about the two
tools used.

6.2 RESULTS AND DISCUSSION

This section presents the results of our experiment and discusses the implications. We
next present both statistical and qualitative analysis to answer our research questions.

6.2 RESULTS AND DISCUSSION 81

1
o 1
S — N '
~
. _
w
2 o
8 2 '
S B —
w R E—
= _
£ 3
™ - -t
|}
s i
— | | | |
E-X E-Z T-X T-Z

System versus Tool

Figure 6.4: Time results grouping tools and systems. E: Elevator; X: VarXplorer; Z:
Varviz; T: Telephone

6.2.1 RQ1: Does VarXplorer improve the performance of identifying suspicious
interactions compared to Varviz?

Participants using VarXplorer outperformed participants using Varviz with respect to the
average task time!. On average, participants accomplished their tasks 3.06 times faster
using VarXplorer. The participants that used VarXplorer took an average of 3 min to
perform the task, while the others that used Varviz had an average of 9 minutes. All the
participants were able to identify the suspicious interaction in both tasks, which is why
we compare time and not also correctness. Thus, all of them finished successfully their
tasks. Figure 6.3 graphically shows the time results.

Statistic analysis of performance. We used ANOVA to statistically evaluate the
tools. The difference between the average times to perform the study tasks with each
tool proved to be statistically significant. Based on the ANOVA test, we rejected the
null hypothesis (p-value < 2e-16) that the distribution of the population is homogeneous.
Thus, VarXplorer reduces developer effort to identify suspicious interactions in both tasks,
elevator and telephone system.

Figure 6.4 shows the results for our 4 groups. For both systems, there is a signifi-
cant effect size between Varviz and VarXplorer tasks. The subject systems had similar
performance times, and regardless of system, VarXplorer was faster.

Test of assumptions. The ANOVA test requires two assumptions of the underlying
data: normal distribution and homogeneous data. Our statistical tests show that our data
is normally distributed (p-value = 0.4447), but is not homogenous (p-value = 0.0015).
However, the heterogeneity of the data does not affect the results of ANOVA, since the
groups have the same size [115], 24 measures each®. Figures 6.3 and 6.4 also show that

4The time measured for the participants is in the Appendix B.3 and the R script is in the Appendix
B.4.

5To confirm our analysis, we also performed non-parametric tests with Kruskal and Wilcox. On both
tests, we rejected the null hypothesis, affirming that our results are robust.

82CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

the data presents a large effect size, such that violating the assumption is unlikely going
to change the decision of rejecting the null hypothesis.

Analysis of order influence. Even though we designed our experiment to avoid
learning effects and tool/system order influence, we still performed the ANOVA test on
the groups to check whether the order presented an influence.

For the systems group, the data from the order of the systems are not different, i.e.,
the order of the systems does not statistically influence the results (p-value = 0.803). For
the tools groups, it presents a large effect size between the groups that used VarXplorer
against the Varviz groups. According to the ANOVA test, we get statistically significant
evidence that our groups have different averages (p-value < 2e-16). Thus, the order of
the systems does not matter to the evaluation.

In order to analyze the interactions in the tools order group, we performed a Tukey
HSD test [115]. We saw a small learning effect when Varviz is used after Varxplorer (p-
value = 0.0378). This situation occurs because the participants learn from VarXplorer
graphs: they learn about relationships between features and start to explicitly look for
them in the Varviz trace. Although the systems presented a small difference, this situa-
tion does not significantly affect the analysis of variance: this effect is tiny compared to
the overall effect size. The fastest Varviz time is still significantly slower than the slowest
VarXplorer time.

RQ1: The results confirmed that participants using VarXplorer identify feature
interactions at least 3 times faster compared to participants using Varviz.

6.2.2 RQ2: How does the interaction graph presented by VarXplorer help under-
stand the suspicious interactions in a program?

We analyzed the videos (audio and the screen recordings) of all participants to know how
feature-interaction graphs help understand feature interactions. We watched the videos
to find common activities that the participants performed during the tasks, besides com-
paring the findings with the interviews answers. Thus, we could compare the participants
perception with the activities performed in the tasks.

Observation 1: The explicit type of relationship for a pair of features guides the analysis
and decreases the analysis time.

VarXplorer represents an alternative to detect interactions with no need to debug the
code. The require and suppress relationships graphically represented as colored arrows in
the graph caught the attention of the participants to what is happening with a given pair
of features. In a debugging tool, such as Varviz, subjects need to follow the execution
flow step by step to interpret what is going on in the system based on methods and
variables calls, for example. During the survey performed after the experiment, P20 (see
Table 6.1) affirmed: “VarXplorer is simpler and easier because it shows, in addition to
the interactions, the relationships”. Along the same lines, P13 said: “The colors of the
arrows i VarXplorer serve as an alert to me to investigate whether the interactions are
correct or not”.

6.2 RESULTS AND DISCUSSION 83

Participants also talked about partial relationships. For example, when a feature sup-
presses the other of changing a specific variable. Partial relationships affect just one
or some variables (also called conditional variables as discussed on Section 5.2.2), but
not all the behavior of a given feature. A program usually has many variables, which
may assume many values to different interactions. Looking for conditional variables is a
hard task. VarXplorer makes this process faster to show the influence of a relationship
on variables, interaction-dependent variables. For instance, P14 stated: “I don’t need to
look for the variables which may be problematic, the VarXplorer graph already brings this
information to me.”

Observation 2: To use VarXplorer, the user might not need to know details of the
implementation, or even the programming language used.

The VarXplorer graph only presents interaction information, without showing other
unrelated details, such as control flow paths, methods and classes names, non-related
variables, and variables values. Any person that has knowledge about the system require-
ments and the feature specifications may be able to judge whether the features behave
as expected, based on the relationships presented in the graph. For example, P21 said:
“VarXplorer is more objective in showing the interactions. I do not need to worry about
low level of the system, such as methods, classes, components, and all the possible ways
the program can go to realize that an interaction is suspicious.”

We observed that participants become convinced an interaction is suspicious based
on the perception they have of the features description of the system. Figure 6.5 shows
that just two of the participants looked at the source code. They looked at it during the
Varviz tasks to see how some features were implemented. In this way, VarXplorer can
be used by different profiles in a development team (e.g., engineers, managers, testers,
and developers), even those that do not know details about the system. P8, who is a
developer affirmed: “I even do not need to know the programming language or how the
code 1s implemented, any person from our team can use the graph to understand what is
going on in the system”.

Observation 3: VarXplorer also shows non-interacting features and no-effect features,
which might be indicatives of bugs.

Besides interactions, VarXplorer also shows features that do not interact with any
other feature (non-interacting features). In cases where developers know that a given fea-
ture should interact, this information can alert them that something may have happened,
leading the feature to not interact with anyone else.

The same occurs with features that are not called in the execution (no-effect features):
if we run a test case that a given feature should be executed, and it is not, it is a case to
be investigated. This information about non-interacting features and no-effect features
is not explicit in Varviz, while VarXplorer graphically represents them. Non-interacting
features are shown in the trace because they have effect and are part of the execution,
but no-effect features are not represented. This information was perceived as useful by
some participants, as P16 stated: “VarXplorer shows me features that have no effect or
do not interact, while this information is hidden in Varviz”.

Observation 4: Understanding interactions in Varviz takes longer than finding out where

84CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

they are located in the trace.

Varviz tests all the combinations of features and captures control and data flow of
a given test case. Since the trace shows more information than the graph, we suspected
that the time to identify a suspicious interaction (find where in the trace the features are
interacting together) would be longer than to properly understand the interaction (tell
us if the interaction is either OK or suspicious).

Furthermore, participants complained about the time spent to find an interaction in
the Varviz trace. For example, P5 said: “I see how the trace works, but it is not clear
to me where I should take a look at to find interactions”. Another one, P7, also stated:
“Varviz presents everything together, a mix of information. It shows more things than I
need to understand the interaction.”

However, we observed that most of the time was spent on properly understanding
the interactions, which in practice consists in comprehending Boolean logic expressions
related to the suspicious interactions present in the trace. Figure 6.5 shows the execution
of the tasks for the 24 participants. For most of them, the time related to understand
an interaction with Varviz took twice as long than identifying it in the trace. Still, we
believe we cannot generalize this particular result to other interactions or even other sys-
tems, because the suspicious interactions of our tasks was placed in the first third part of
the trace, coincidentally. Thus, since the participants started to analyze the trace from
the beginning, we believe that the time to identify an interaction is more related to the
moment it is called in the execution.

Observation 5: VarXplorer and Varviz complement each other.

VarXplorer has been discussed as faster and easier to identify and understand an in-
teraction than Varviz. Although Varviz also shows interactions, it has a different purpose.
It was designed for understanding faults and program comprehension tasks that involve
understanding differences among similar executions [65]. For instance, P3 reported: “I
can use the graph to get an overview on the features that interact, and then I can use the
trace to understand the details, see the value of the variables and the flow of execution.”

We observed that Varviz is a valuable strategy to be used after detecting the inter-
actions with VarXplorer. Varviz can be used instead of a standard debugger to look for
the cause of an interaction bug. Both tools are Eclipse plug-ins and we believe they may
can complement each other in practice.

RQ2: The results confirm that the relationships graphically represented as arrows
and colors in VarXplorer make the developer work easier and faster. Also, VarXplorer
only shows conditional variables, which reduces the amount of information shown to
developers.

6.3 THREATS TO VALIDITY

External Validity. We applied our approach to small programs due to the boundaries of
an in-lab study; our results may not generalize to larger programs in the wild. However,
given that our approach was clearly helpful even in small programs, we argue that is

6.3 THREATS TO VALIDITY

23
21
19
17

15

Participants

o
=
o
S

200 300 400 500 600 700
Time (seconds)

M Identifying Interaction OlInspecting Source Code

E Understanding Interaction B Inspecting Documentation

(a) Varviz Tasks

= - BONN
w = © Rk, W

[uy
wv

Participants

300 400 500 600 700
Time (seconds)

o

100

N
o
o

(b) VarXplorer Tasks

Figure 6.5: Time spent on performing the tasks to Varviz and VarXplorer.

85

800

800

86CONTROLLED EXPERIMENT: UNDERSTANDING FEATURE INTERACTIONS WITH THE GRAPH

likely helpful for larger systems as it is nearly impossible to detect behavioral interactions
without specifications or without specialized tool support [123].

Construct Validity. We did not compare our tool with a standard debugger as
baseline, as we believe that the task without specialized tool support (e.g., Varviz) would
be too difficult and slow for an in-lab study. Thus, a direct comparison with Varviz, which
is specialized to graphically show the execution, is more practical than to compare with a
standard debugger. Varviz, at least, shows what happens in the execution when features
interact (the trace shows all the possible paths), while using the debugger the developer
has no clue where to start looking for interactions. Given that VarXplorer was shown to
be significantly faster than Varviz with a large effect size, and that Varviz was shown
to outperform the standard debuggger [65], we speculate that comparing VarXplorer to
the standard debugger would have produced an even larger effect size. Another threat
is related the tools presented to the participants, which had never used them before the
experiment. To mitigate this threat, we provided a 10-minutes tutorial before they use
each tool, Varviz and VarXplorer, such that all participants be able to use them for the
tasks.

Internal Validity. We used 24 participants in our study of which several where
students without former experience on interactions (i.e., beginners for this kind of analy-
sis). Experienced programmers for such kind of analysis will perform better for the tasks
proposed. However, also experienced programmers will benefit from our tool support as
VarXplorer provides them essential information that helps to understand and detect fea-
ture interactions. In addition, we used a think-aloud protocol to gain qualitative insights,
which may influence the performance of the participants. However, we argue that the
influences are similar across the groups and that the differences among the tools are large
enough that this influence can be neglected.

Conclusion Validity For this experiment, we used ANOVA [115], a well known sta-
tistical techniques. ANOVA is robust to violations of their assumptions, when the groups
have the same size. We have four groups with six participants each. In addition, the ex-
periment data is normally distributed and presented a large effect size for our treatments:
participants using VarXplorer are more than three times faster than participants using
Varviz.

6.4 RELATED WORK

Instead of variability-aware execution, some approaches have performed static analysis
to detect interactions [105, 106, 124]. However, despite recent advances, static analysis
of systems with high accuracy remains challenging [124, 125]. In contrast, we use a dy-
namic analysis, variational execution, which is able to analyze large software [49, 50, 126].
Others aim to execute configurations separately, and use symbolic execution to identify
interaction problems [127, 47]. Reisner et al. measured the effect of interactions only on
control flow using symbolic execution [108], whereas we analyze both control and data
flow.

Delta debugging approaches systematically narrow the state difference between a pass-
ing run and a failing run [128, 129, 130]. For example, Zeller [128] isolated cause-effect

6.5 CHAPTER SUMMARY 87

chains for failures. Sumner et al. [129, 130] improved Zeller's work and provided an
automatic debugger to precisely align two executions. Conversely, our approach explains
differences among many executions. Unlike Delta debuggers, Varviz dynamically tests dif-
ferent executions [65]. However, as far as we know, no work provides explicit information
about the relation between features, as we do with suppress and require relationships.

Several approaches work with feature-based specifications to detect interactions. Li
et. al [44] present a model checking approach to detect interactions automatically given a
group of feature specifications. The approach tests CTL (computation tree logic) proper-
ties of features to identify cases in which the specification is violated. Apel et. al [131] also
propose a technique to verify whether specifications hold across system configurations.
To perform this verification, specifications for intended interactions may be needed, and
each feature requires a formal specification of its behavior.

With feature-based specifications, interaction faults can be detected when a feature
specification is violated in a configuration. In practice, nevertheless, it is uncommon to
create specifications for all features. In general, approaches based on feature specifica-
tions present two main drawbacks: (1) from the whole set of features, it is not clear
which combinations of features need to be verified and (2) verification tools need precise
specifications to check against, information that developers are often reluctant to prepare.

Global specifications only describe properties for all configuration systems, and can
thus not describe nuances of intended and unintended interactions to recognize if they
affect feature behavior. Generally, it is difficult to find bugs caused by unintended in-
teractions without any specification. Thus, despite their disadvantages, global specifica-
tions provide a convenient way of detecting interactions. For that reason, many stud-
ies base their approaches on that kind of specifications and focus on exploring the
configuration space, such as systematic sampling [38, 39, 40|, combinatorial interac-
tion testing [41, 42, 43], model checking [44, 131, 46, 47, 48|, and variational execu-
tion [49, 50, 51, 52, 126].

6.5 CHAPTER SUMMARY

We conducted a controlled experiment to evaluate how interaction graphs help identify
suspicious feature interactions in highly configurable systems. We used two systems very
used in the literature once they contain many interactions, Elevator and Telephone. Then,
we compared VarXplorer with another tool, Varviz, and we found that VarXplorer is on
average 3 times faster than Varviz. Next chapter, we present a complementary study that
explores other aspects of VarXplorer, namely the iterative process and feature-interaction
specifications.

Chapter

EXPLORATORY STUDY: AN ANALYSIS ON
VARXPLORER ITERATIONS

VarXplorer is an approach to support developers identifying feature interaction problems.
Our detection strategy involves an iterative process of detecting and documenting eval-
uated interactions. In Figure 5.1, we presented an overview of our approach and how it
incrementally supports the analysis of feature interactions. Given a configurable system,
we execute test cases (system inputs) looking for feature interactions. Users start with
one test case and based on the feature interaction graph, they explore which interactions
are either problematic or benign. The graph provides a visualization of which features
interact, besides presenting relationships and variables.

We present this feature-interaction graph to developers for manual inspection. From
the graph, they can select an interaction, which connects two features, to allow benign
interactions or mark others as suspicious. From this process, developers automatically
create feature interaction specifications that are documented and used for future test
cases.

This exploratory study is complementary to the one presented in the previous chapter.
Instead of evaluating just the graph, in this second study we explore the entire approach to
investigate how the iterative and interactive approach may support the discovery of sus-
picious interactions. The previous study aimed at understanding how feature-interaction
graphs can help developers identify suspicious interactions. It focused on the understand-
ing of the graph and how fast users could identify problematic interactions compared
to the state-of-the-art tool. Thus, it did not discuss about the iterative approach and
feature-interaction specifications.

The objective of this current study is to analyze how feature-interaction specifications
can be iteratively used to reduce the effort of identifying and judging interactions from a
set of test cases. This chapter consists of six major sections:

Section 7.1 presents the research questions of our study;

Section 7.2 describes the subject system, as well as its features and implementation;

89

90 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Section 7.3 presents the design of our study, overview and procedure;

Section 7.4 discusses and analyzes the results of our study, and presents an analysis of
the order of tests execution.

Section 7.5 shows the lessons learned after the exploratory study; and
Section 7.6 discusses the threats to validity;

Section 7.7 concludes this chapter.

7.1 RESEARCH QUESTION (RQ)

In our process, with the support of user interaction, the feature-interaction graph is
automatically refined by removing benign interactions over test cases. When using the
tool, the user can right click on interactions and mark them as benign or problematic. This
refinement is supported through a feature interaction specification language. Interaction
specifications aim to point out the existence of an interaction between two features,
without the need of a formal behavior specification.

Hence, interactions marked as benign are removed of the graph. When executing other
test cases, the developer does not see that benign interactions again in future graphs. In
case of bugs, the user may want to fix the problem directly in the source code and
also mark those interactions as suspicious in the graph. The feature-interaction language
helps developers to either allow or forbid interactions in a configurable system. The goal
is to incrementally remove intended interactions in order to make the analysis of tests
less complicated and faster, focusing on newly unintended interactions. This exploratory
study aims to answer the following research question:

RQ: How do the iterative process on individual test cases reduce the com-
plexity of identifying interactions?

[terativeness means the potential to optimize the feature-interaction detection through
short iterations in sequence, and each iteration has a self-contained program scenario
composed of one test case analysis. In the iterative process, a single test case is analyzed
at a time, which produces one feature-interaction graph with all possible interactions and
relationships among the features for the given scenario.

For this question, we are also interested in understanding how much effort we save
using interaction specifications when executing test cases. Feature-interaction specifica-
tions can be used to inform which interactions are benign or problematic in a test case.
Then, they can be applied over other test cases to remove interactions that are already
known as benign to the program, besides highlighting problematic interactions that may
occur in different tests.

The effort to analyze interactions is related to the size of the graph: the bigger the
graph is, the more interactions the developer has to check whether they are suspicious
or benign. Thus, we also compare the size of graphs without applying specifications
(complete graph) versus the reduced graph, when known interactions are removed. In

7.2 SUBJECT SYSTEM 91

this way, we measure how many interactions the developer are not seeing again during
the iterative process.

7.2 SUBIJECT SYSTEM

We conducted an exploratory study on the basis of the RiSE Event SPL [132]. This
SPL is dedicated to support organizers of a conference. It comprises papers submission
in conferences, journals, and related events, and its management, including the control
over the review life-cycle as well as the management of activities (workshops, tutorials,
panels), users (speakers, organizers, reviewers), registrations, payments and certificates.
RiSE Event SPL was based on the main features found on largely used conference man-
agement systems, such as: EasyChair!, JEMS? and CyberChair®. The SPL is able to
generate different products to different conferences styles.

RiSE Event SPL was developed using Java language, Model-View-Controller (MVC)
architectural pattern and MySQL database. The SPL was initially annotated for compile
time. The conditional compilation was employed to isolate each functional property code
and a build file* was used to derivate SPL products.

For this study, we adapted the SPL to runtime annotation, using JPF annotations
(Java library for runtime code annotations). We replaced each conditional annotation
by a similar annotation that can be read by VarXplorer. We maintained the same ex-
pression created by the SPL developers for the conditional compilation. Therefore, the
replacements are equivalent in terms of logical meaning. Figure 7.1 shows an example of
a replacement. An instance of the PaymentRepository class is created under the con-
dition defined by the presence of at least one of the following features: PaymentCash,
PaymentDeposit, and PaymentCard. As previoulsy explained in Chapter 5, for the run-
time analysis, features are annotated as conditional values in the program.

RiSE Event SPL was chosen to this study because it is written in Java, contains many
features, the documentation is available, and the developers are most of the time available
to discuss the results. They developed the SPL without using any kind of systematic
testing analysis.

7.2.1 Features

The version of the RiSE Event SPL used in this study is composed of 20 functional
features, 26.457 Lines of Code, 1493 Methods and 496 Classes. All features have their
corresponding code delimited by runtime annotations. The features are named as follows:
Fvent, User, Reviewer, Speaker, Author, Activity, ActivityTutorial, ActivityWorkshop,
Registration, RegistrationSpeakerActivity, RegistrationUserActivity, CompleteSubmission,
PartialSubmission, Review, Payment, PaymentCash, PaymentDeposit, PaymentCard, As-
signment, and ConflictOfInterest. Figure 7.2 shows the feature model of the SPL devel-
oped before and independent of our study, by other developers [132].

Lwww.easychair.org/

2jems.sbc.org.br
3www.borbala.com/cyberchair/
4https://ant.apache.org

92 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

/* Compile time annotation used before modification %/

//if ${PaymentCash} == "True" or ${PaymentDeposit} == "True" or ${PaymentCard} == "True"
PaymentRepository paymentRepository = PaymentRepositoryBDR.getInstance();
//#endif

/* runtime annotation that can be read by VarXplorer x/

if (Configurator.PaymentCash || Configurator.PaymentDeposit || Configurator.PaymentCard }{
PaymentRepository paymentRepository = PaymentRepositoryBDR.getInstance();
}

Figure 7.1: The same code excerpt annotated for compile time and runtime.

7.3 EXPERIMENTAL STUDY DESIGN

This section presents details of the experiment, how it was defined, executed and analyzed.

7.3.1 Study overview

The iterative process proposed by VarXplorer consists of executing test cases incremen-
tally. The process starts by running a small test, which tends to generate a small graph.
Then, we incrementally increase the test complexity (increasing number of features and
test activities) until we have tested all system functionalities.

We execute each test using VarXplorer and analyze the feature-interaction graph.
The analysis consists of the execution of a test case one at a time. The user checks each
interaction and marks it as either benign or suspicious (right clicking on edges of the graph
and choosing an option - either allow or forbid the interaction). When an user marks the
graph, it automatically creates feature-interaction specifications to document interactions
defined as benign and problematic. Those specifications, as described in Section 5.3,
differs from global and feature-based specifications because they do not represent a formal
description of the feature and system behavior. Instead, it provides a lightweight strategy
to indicate that there is an interaction between two features.

VarXplorer also shows partial interactions, the ones related to variables, which can
be analyzed separately for each variable. In case of finding problematic interactions in a
graph, we first need to fix the problem at source code and then, run the test again to
check how the features are interacting. We repeat this process until we believe that the
test does not contain any other suspicious interaction.

VarXplorer proposes to run test cases in sequence, in which the next test case is run
after the analysis of the previous one ends. The analysis of a given test includes: (i)
understanding each interaction of the graph, and; (ii) having all bugs fixed, if any. This
process is iterative and incremental until we have executed all tests from the test case
suite. The tests were executed using the same laptop (2.3GHz i5, 16 GB DDR3) and
Eclipse IDE (Oxygen version).

7.3 EXPERIMENTAL STUDY DESIGN 93

Reviewer Legend:
User Speaker d Optional
Abstract
Author
Concrete

RegistrationUserActivity
(O Registration <
RegistrationSpeakerActivity
Activity Tutorial
Activity <Z
ActivityWorkshop

RiSE_Event

PaymentCash

Payment PaymentCard
PaymentDeposit

Event

Review
CompleteSubmission
o Assignment |——() ConflictOfinterest

Submission

PartialSubmission
Figure 7.2: Feature model of the RiSE Event SPL.
7.3.2 Design

Before running the actual experiment, we performed a set of preparatory steps, as Table
7.1 shows. First, we had a practical session with the SPL developers to configure the
Eclipse environment and database. Then, we adapted the SPL annotations to runtime
code annotations. The session to modify the annotations took 8 hours split across 2 days.

The RiSE Event SPL project did not have any test cases available for this study.
Therefore, the process to create the test case suite was supported by the original SPL
developers. We performed a brainstorming session to discuss the possible scenarios and
how the tests would be built. At the end of the session, we defined each scenario in
natural language. The brainstorm session took around 2 hours. Then, we implemented
the tests in Java and validated them with the developers to certify whether the tests
would achieve the proposed goals (features coverage). The test case suite was developed
in about 8 hours, and the validation session took 2 hours.

After the initial phase, preprocess, the actual experiment was conducted. We created a
test suite with 15 tests. First, we executed tests 1 to 7 and performed a verification session
with the RiSE Event SPL developers to present the information gathered. Interactions,
problems, causes and solutions (fixes at source code) were presented to be discussed. The

94 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Table 7.1: Experiment Design

Preprocess

| Activities Objective Involved Subjects

1 | Practical Session | Adapt annotations & configure environment | SPL developers and VarX-
plorer expert

2 | Brainstorm Define scenarios SPL developers and VarX-
plorer expert

3 | Implementation | Tests development VarXplorer expert

4 | Validation Tests validation SPL developers and VarX-

plorer expert

Actual Experiment

1 Tests 1 to 7 Execution and analysis of tests 1 to 7 VarXplorer expert

2 | Verification Validation of bugs and interactions found SPL developers and VarX-
plorer expert

3 | Tests 8 to 15 Execution and analysis of tests 8 to 15 VarXplorer expert

4 | Verification Validation of bugs and interactions found SPL developers and VarX-

plorer expert

same process was conducted for tests 8 to 15: we first executed and analyzed the tests
and then validated them with the SPL developers. This experiment took 2 weeks. Table
7.2 presents the list of tests.

In addition, after the analysis in sequence from test 1 to test 15, we created and run
three sets of the same tests randomly organized. This analysis checked whether the order
of the tests have any influence in the results.

7.3.3 Procedure

Before running the tests, we also created a test harness, we filled out the SPL database
with some initial information. We created 4 events, 4 authors, 5 users, 4 activities, 2
speakers, 3 reviewers, 4 reviews, 4 submissions, 3 payments, 2 registrations, and 3 as-
signments. The test cases manage this information in the database, searching, changing
or creating new data. Figure 7.3 illustrates this information contained in the database
before running the test suite.

We implemented test cases that comprehend possible use scenarios. We started with
small scenarios composed of few features and incrementally increased the tests in terms
of complexity and number of features. For example, one test creates events, and the next
one creates and updates events. The saturation was achieved when we had tested at least
all features and the creation of new test cases did not generate any new interaction.
Thus, our set of test cases is composed of scenarios, extensions of other scenarios and
new scenarios. In other words, the test suite has a mix of tests with the same features,
but different inputs; tests with features not tested in previous tests; and tests with a mix
of non-tested features and features already tested, as Table 7.2 shows.

When executing a given test case, the variational execution tests all combinations
among the features of that test in one single execution. For instance, if we consider a test
with 3 features (A, B, and C), a single execution is able to test the program and all the
features combination, enabling and disabling each feature. This process, earlier presented

7.3 EXPERIMENTAL STUDY DESIGN 95

Database |
®
(] @
22 /&8 i
222 o 0 YRy
ws wf
Users Authors Reviewers Speakers

RHH Www

D Igiglg! s
o B
Mottt

—| maaa FTHH WRw

! Submissions

.,. .= % s ‘Events : Reviews
o gl

o shet gaa

Activities Registrations Assignments Payments

Figure 7.3: Database used for the tests.

in Section 4.5 in this Thesis, is similar to execute the same test case 7 times, one for each
possibility among 3 features (i.e., A, B, C, AB, AC, BC, and ABC). Instead of creating
7 tests, the variational execution tests all the 7 possibilities in a single execution.

Due to the ability of exhaustively executing a test case over all configurations of a
software product sharing redundancies of the executions, the test suite does not need to
contain one test to each configuration. Consequently, the variational execution reduces
the need for additional tests. In this way, the basis for designing tests to run under
variational execution is to consider different user scenarios, which should simulate how
the user would use that system. We used the white-box technique to create system tests.
The goal of system testing is to run the system from the point of view of its end user
[133]. The scenarios contain different features and the set of tests aims to evaluate all the
functionalities of the system. For example, T6 registers new reviewers; the following test
extends T6 by registering a new submission; and T11 tests other functionality, it registers
an user in an activity, both from the database.

The analysis procedure consists of running each test separately. Figure 7.4 shows the
flow chart of this process. When a test is executed with VarXplorer, the corresponding
feature-interaction graph is created. To analyze interactions, users have to check the
graph and judge them as either benign or suspicious. In case the users identify suspicious
interactions, we suggest them to look for the causes of the problem and fix them at
source code before running the next test case. Then, they have to run the test again and
check the graph after the fix to guarantee the problem has been fixed. At this point,
the graph created after the fix should not contain the same interactions of the former

96 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Table 7.2: Details of the Test Case Suite

Test | F Description
T1 4 Tt creates and updates events, and updates activities
T2 4 In addition to 1st test, it also creates activities
T3 3 It adds a registered speaker to a registered activity
T4 4 In addition to 3rd test, it creates new speakers
T5 4 In addition to 4th test, it adds new speaker to a registered activity
T6 2 It creates reviewers
T7 5 In addition to 6th test, creates a new submission
T8 6 In addition to 7th test, attributes new submissions to users
T9 7 In addition to 8th test, attributes submissions to authors
T10 | 7 In addition to 9th test, creates reviews to submissions
T11 | 4 It registers an user in an activity
T12 | 8 In addition to 12th test, registers a payment
T13 | 6 It creates assignments to different reviewers
T14 | 7 In addition to 13th test, checks conflicts between authors and reviewers
T15 | 8 In addition to 15th test, send messages to reviewers

F: number of features;

graph. Since the source code may have changed, the behaviour of the program changed
as well. The graph may contain new interactions, and others related to the bug may not
happen anymore. Thus, this graph need to be checked again, and the process restarts: the
interactions of this new graph should be checked and judged until all interactions have
been understood.

7.4 RESULTS

This section presents the results of our study and discusses implications. We next present
our exploratory analysis to answer our research question on how the iterative process on
individual tests reduces the complexity of identifying interactions.

We executed the tests sequentially, one by one, from T1 to T15. Table 7.3 shows the
type of interactions found for each test, besides variables identified and time of analysis.
The tests range from 2 to 8 features each. The smallest graph (T6) has 2 interactions,
and the biggest one (T12) has 32 interactions. They are composed of require and suppress
relationships, and conditional variables.® For instance, T15 presented 29 interactions in
total, but since the graph was simplified based on specifications built from T1 to T14, it
was reduced to 17 interactions, 16 out of them are require interactions and 1 is a suppress
interaction.

The test suite has a total of 431 conditional variables and 149 different interactions.
118 are require interactions and 31 are suppress interactions, scattered over 15 tests. 11
suppress interactions and 6 require interactions presented problems. The system used in
this study has 20 features, in which each feature interacts at least with 3 other features
for this test suite. The least interacting features are Event, ActivityTutorial, and

5Variables that depend of at least 2 features.

7.4 RESULTS 97

_ | Execute the
test

Judge

interactions

Look for the f Mark at graph
- Benign? Yes—p]
cause I'm not sure g

| :

Isita No
problem?
Yes
Fix at source Mark at graph

code

Y

Figure 7.4: Flow chart of the process to analyze interactions of a test case.

ActivityWorkshop. On the other hand, the features Activity and User are the ones
that interact the most, with 10 features each.

The first test (T1) creates new events, updates recently created events, and updates
the price of an activity registered in the database. Figure 7.5a shows the graph presented
to the user after executing T1. There are 4 interacting features, which interact with at
least with 1 other feature. Based on the domain knowledge, T'1 should only contain inter-
actions between Activity and Event. Nonetheless, the graph presents interactions with
two other features: ActivityTutorial and ActivityWorkshop. These two last features
should neither has effect nor interact with others for that test. In addition, the feature
Activity should not suppress any other feature of the system, as the graph shows. As
a result of the analysis, we recognized those interactions as suspicious and with high
chances of representing a bug in the system.

Although we were able to identify interactions as suspicious based on the feature-
interaction graph, it was not enough to understand what triggered that suppress interac-
tions. The graph was proposed to support and provide a fast identification of problematic
interactions, and the source code should still be used to solve the problem. Thus, to un-

98 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Table 7.3: Interactions type, variables and time of analysis

Interactions

st # Require # Suppress Total Variables involved s
T1 2 4 6 (6) 17 8 hours
T2 6 1 7(7) 7 1 hour
T3 4 0 4 (4) 6 30 min
T4 7 0 7(8) 43 20 min
T5 10 4 14 (15) 56 20 min
T6 2 0 2(2) 3 5 min
T7 4 2 6 (8) 32 10 min
T8 10 2 12 (14) 32 10 min
T9 4 2 6 (15) 22 5 min
T10 6 2 8 (19) 30 5 min
T11 12 0 12 (12) 30 15 min
T12 18 4 22 (32) 94 20 min
T13 8 1 9(9) 13 5 min
T14 9 2 11 (20) 17 15 min
T15 16 1 17 (29) 29 10 min

#Require: number of interactions of require type; #Suppress: number of interactions of suppress
type; Total: x (y), x means number of interactions shown in the graph after applying specifications,
and y means number of interactions when no specification is applied; Variables involved: number of
conditional variables present on the interactions of that test case; Time: Time spent to analyze each
graph, judge as benign or problematic, and fix the problems at source code (if any).

derstand the cause of the suspicious interactions of T1, we analyzed the execution trace,
the source code and also used the Eclipse debugging tool. For this first test, we used all
the available resources to look for the problem, which was a wrong expression used in
one annotation. Because of the wrong annotation, the program was calling unnecessarily
routines and interactions.

Since T'1 was the first test case of our analysis, it took longer to be understood than
the other tests. After finding the problem and fixing it at source code, we came back to
the graph and marked the suspicious interactions as forbid. In order to confirm that those
interactions had been fixed, we ran the test case again. Figure 7.5b shows this graph.b
After fixing the problem at source code, the graph only shows one interaction: feature
Event requires feature Activity related to 2 variables (activity and value). According to
our analysis of the source code and domain, this interaction behaves as expected and then,
it was marked as benign in the graph. Benign interactions are automatically removed.
Figure 7.5¢ shows the same graph presenting that the interaction between Event and
Activity has been removed because it is benign.

The entire process to analyze T1 took over 8 hours. Figure 7.6 shows the set of
specifications automatically created after finishing the analysis of T1: two interactions
marked as forbid and one interaction that includes two variables marked as allow. At the
end of the analysis of all tests, the set of specifications should contain all the specifications

5The steps of this process is shown on Figure 7.4.

7.4 RESULTS 99

requirgs-=*""
e

requires
) N

-->Feature Interaction: Event - Activity ™
1.Allow 'requires’ on Activity activity

Forbid 'requires' on Activity activity

2.Allow 'requires’ on float Activity.value

Forbid 'requires’ on float Activity.value

(a) First Graph (b) Graph after fixing the problem

(c) After applying specifications

Figure 7.5: Graphs generated for the analysis of T1.

created from T1 until T15. The set starts with the specifications automatically created
for T'1 and increases incrementally until the analysis of the last test case, T15. As a result,
at the end of the last test, we created a total of 286 specifications. This number is high
because one interaction is created to each variable analyzed by the user. Appendix C
shows the final file with all specifications.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<system name="RiSE Event SPL">
<specification type="Forbid"><suppress from="Activity" to="ActivityTutorial"/></specification>
<specification type="Forbid"><suppress from="Activity" to="ActivityWorkshop"/></specification>
<specification type="Allow"><require from="Event" to="Activity'><var name="Activity activity"/></require></specification>
<specification type="Allow"><require from="Event" to="Activity"><var name="float Activity.value"/></require></specification>
</system>

Figure 7.6: Specifications automatically created after the analysis of T1.

An specification refers to either the whole interaction (total relationship) or a single
variable of an interaction (partial relationship). For example, the two first specifications of
Figure 7.6 forbid any interaction between that pairs of features, regardless the involved
variables, they are all forbidden. On the other hand, the last two specifications allow
interactions between features Event and Activity only related to the variables activity
and value. Since other variables of this interaction are not mentioned, if different variables
appear in future test cases, they will be shown in the graph to be judged by the user
again.

From the second test case, VarXplorer recognizes that new specifications were created
and applies them to reduce the graphs. This process cleans all benign interactions in case
they are repeated over the tests. For example, T2 is an extension of T1. It has not only
more features and more interactions, but also has that same interaction between Event

100 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Table 7.4: Test Cases: Problems identified and percentage of cleaning

Found and Fixed Bugs % of Reduction ‘

Test | Interactions Spec Cleaned from others

Require ‘ Suppress Int. ‘ Vars
T1 6 0 2 0 0,00% 0,00%
T2 7 0 1 5v (1i) 0,00% 45.45%
T3 4 0 0 0 0,00% 0,00%
T4 7 0 0 1i, 9v (3i) 12.5% 4.92%
T5 14 0 4 1i, 51v (8i) 6.66% 47.66%
T6 2 0 0 0 0,00% 0,00%
T7 6 0 1 2i, 3v (2i) 25,00% 27.27%
T8 12 0 0 2i, 32v (7i) 14.29% 47.76%
T9 6 0 0 9i, 66v (13i) 60,00% 70.21%
T10 8 0 0 11i, 58v (16i) 57.89% 44.96%
T11 12 0 0 0 0,00% 0,00%
T12 22 6 2 10i, 30v (12i) 31.25% 31.58%
T13 9 0 0 4i, 6v (4i) 30.77% 31.58%
T14 11 0 1 9i, 17v (11i) 45,00% 53.13%
T15 17 0 0 12i, 25v (144) 41.38% 50,00%

Interactions: number of interactions presented in the graph with applied specifications; Require:
number of problematic interactions of type require; Suppress: number of problematic interactions of
type suppress; Spec Cleaned from Others: number of specifications removed from the graph after
applying the set of specifications; in which [zi, yv (z1)] means x interactions removed and y variables
from z different interactions; Int: percentage of interactions removed from the graph; Vars: percentage
of variables removed from the graph.

and Activity, removed by the specifications. Thus, VarXplorer reduces the number of
interactions that the user has to judge.

During the analysis of T2, one interaction was identified as suspicious. After the
analysis of the source code, it was confirmed as a problem: a workshop activity was
not created as it should because another feature blocked its effect, ActivityTutorial
suppressed ActivityWorkshop. The problem was caused by a wrongly nested code. Table
7.4 shows that 6 out of 15 tests presented problems, and 17 interactions were marked as
suspicious.

The feature-interaction problems found in the RiSE Event SPL were validated with
the SPL developers twice during the test process, as Table 7.1 shows. All problems were
confirmed and none of them were refuted during the verification sessions. RiSE Event
SPL presented 5 types of problems:

e Bad Annotation. The expression used in the annotation is incorrect. It creates
wrong interactions and may generate malformed products.

e Wrong Object. An object used in place of another. The program was implemented
based on MVC pattern. A method was copied from another class and part of it was
maintained as it should not.

e Misplaced Variable Overwrite. The value of a variable is overwritten in a wrong
place with a wrong value.

7.4 RESULTS 101

e Conditional Statement. Incorrect implementation of conditional statements, us-
ing wrong or incomplete conditions.

e Spread Code. Piece of code spread over different features leading to unnecessary
dependencies and problems related to code modularity.

We did not find any problem that led the program to a crash. However, some problems,
such as wrong object, conditional statement, and misplaced overwrite may lead to a wrong
behaviour. For example, in T7, the user is obliged to fill all paper information before
submitting it, although the program should allow partial submissions. Other problems
provide unnecessary dependency and impair software maintenance/evolution.

From the analysis of T2, VarXplorer used the specifications created during the analysis
of T1 to remove benign interactions of the next tests. Table 7.3 and Table 7.4 show
the number of interactions and variables cleaned during the testing process from T1 to
T15. For example, the graph of T10 presents 19 interactions but 11 were removed from
specifications. The user had to judge only the 8 interactions showed in the reduced graph.
In addition, at the same test, 58 variables of 16 different interactions (117, 58v (161)) were
also removed from specifications. They all appeared in previous tests (T1 - T9) and were
previously marked as benign. VarXplorer also allows the user to see both graphs, the
reduced and the complete one. For T10, the user had 57.89% less interactions and 45%
less variables to analyze when using the specifications provided by VarXplorer.

Figures 7.7 and 7.8 show both graphs of T10, complete and reduced, respectively. The
reduced graph has less interactions and, thus, it is faster and easier to analyze compared
to the complete one. Hence, the user need to analyze only the new interactions, which
appeared for the first time in this graph. For example, all interactions related to User,
InsertAuthor, and Activity were removed because they were judged as benign during
the analysis of T9. Appendix C.2 shows all the graphs used during the analysis of the
15 test cases. It includes the reduced graphs, intermediary graphs generated after fixing
bugs, and final graphs generated after judging interactions as allow or forbid. Although
the goal of this study is to explore specifications using the reduced graphs to do the
analysis, we also show the complete graph in the Appendix C.2 to serve as comparison
to the reader.

In general, by using the iterative process and the specifications, we had 45% less
interactions to judge in average; and 50% less variables, considering the graphs that
presented reductions. Graphs with 0% of reduction (T1, T3, T6, and T11) represent new
scenarios containing features not tested in previous tests during the analysis. Thus, they
have interactions not seen in previous tests.

7.4.1 Analysis of Order Influence

In this study, we are investigating the iterative process on individual test cases and how
it reduces the complexity of identifying interactions. For the iterative process, we created
the test suite incrementally, increasing the number of features and scenarios complexity.
The tests were executed sequentially and ordered from the smallest to the largest graph,
T1 to T15. Small graphs have less interactions and are easier to analyze compared to large

102

EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

requires. -~

N) “-a ___;r»equires
S . 5)---..

Pt '-". suppresses

) @y .
Com eteSubr"'_r_'_:‘ “ suppresses
el " 21)

. TT---.requires

\‘ N, (4)7"---

' ‘o

n\ 0"

S

'«
 reduires

Y

W, o)
Ink r
requjres
(3’. H \re‘quires
H (3.
'\ I!‘req uires
reqléiré})
@ o

requir?équiresf";."
5 res

requires_.---"""
_..---tiquires
(5)

req‘il ires

an

Figure 7.7: Complete graph of T10.

4 reqyjrérsr“
5 ety
'Sl ”, K3
H
-{\ . "g.B) p
\7‘,’ requires
/ ‘f T,
/! §‘ § e 3
1 / .
|
I
/I’ \
4
k)
\
A
\
\
\
1. requires
reqqlres (11)
(1)
A
\
A
\
\
\
\
\
\

Figure 7.8: Reduced graph of T10.

7.5 LESSONS LEARNED 103

ones. For example, we started with T1 with 4 features and 6 interactions to judge, and
finished with T15 with 8 features and 17 interactions to analyze, because 12 interactions
were removed during the process.

After the analysis of all tests and validation with the SPL developers, we randomly
changed the order of the tests and created three different sets of tests. The analysis was
conducted to check whether the order in which the tests were executed had any effect in
the iterative study. Table 7.5 shows these sets and the additional effort needed for each
analysis. The value zero in Table 7.5 means that no additional effort was used to judge
the graph, i.e., either it has the same number or less interactions than the same graph of
the ordered list.

For the set of tests analyzed in an orderly manner, each subsequent test is reduced
because of benign interactions that have been identified in previous tests. However, when
we change the order, we do not guarantee that small tests come first and the analysis may
have a high initial effort. For example, T8 was the first test to be analyzed in the first
random set (1st R set) of Table 7.5. For this analysis, T8 has 2 interactions and 25 more
variables (+2i 25v) compared to the original test showed in Table 7.3. This happened
because when the tests were executed in an orderly manner, T5, T6 and T7 were executed
before T8. The effort to analyze T8 in the random set was higher compared to the ordered
execution. The tests are incremental and T5 to T8 have a similar scenario, but they grow
in the number of features. Thus, the effort to analyze T8 this time was higher than when
executed in an orderly manner.

Although the initial effort may be higher, the overall effort is the same for all sets
of tests, regardless the order. The effort here is related to the number of interactions
to analyze: the amount of unique interactions and variables in each set is the same. All
the tests presented 149 different interactions and 431 unique conditional variables. We
did not find any new interaction, variable, or problem due to variations on the order of
execution. Hence, the number of unique interactions did not change, independently of the
order of execution.

When large graphs are executed first and out of order, users have much more infor-
mation to check. The number of removed interactions is reduced and the complexity of
the analysis increases, the user see more interactions in a single graph. Conversely, ana-
lyzing small graphs first, when they get to analyze a large graph, it is likely that many
interactions have been removed during the small graphs analysis. VarXplorer proposes to
execute tests in an orderly way, which decreases the complexity of the feature-interaction
analysis.

7.5 LESSONS LEARNED

For this exploratory study, we used VarXplorer to find feature-interaction problems in
the RiSE Event SPL. We executed a test suite with 15 different tests and scenarios. As
the test cases grow and features are repeated among tests, many interactions are repeated
and, thus, they are no longer showed. The graph then shows only the new interactions,
getting smaller and simpler to interpret. For example, the graph of test 9 was reduced
by over 61% less interactions when using the iterative process and specifications. It was

104 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

Table 7.5: Three random samples of the test suite

1st R set Additional Effort 2nd R set Additional Effort 3rd R set Additional Effort

T8 +21 25 v T10 +11i 58v T8 +2i 32v
T14 +10i 15v T6 0 T3 0
T3 0 T9 0 T12 +10i 30v
T10 +2i 10v T3 0 Tb5 +4v
T2 +7v T14 +9i 17v T13 +4i 6v
T13 0 T2 +9v T15 +51 12v
T7 0 T15 0 T10 +9i 15v
TS +7v T7 0 T1 0
T9 0 Tb5 +36v T6 0
T1 0 T11 0 T9 0
T15 0 T1 0 T11 0
T4 0 T4 0 T14 0
T11 0 T12 0 T2 0
T6 0 T13 0 T4 0
T12 0 T8 0 T7 0

R set: random set.

cleaned of 11 interactions and 58 variables.

Appendix C.2 shows how the graphs would be if they were not reduced (complete
graphs), reduced graphs, intermediary graphs, and final graphs. Intermediary graphs
are the ones generated after fixing problems at source code in order to solve suspicious
interactions. Those suspicious interactions may generate additional interactions that au-
tomatically disappear when the problem is fixed. To avoid unnecessary work of analyzing
interactions created from bugs, we start the analysis with suppress interactions first. Most
of the problems we found were related to suppress interactions. Only 1 graph out of 15
presented suspicious cases related to require interactions, (T12, as Table 7.4 shows). All
the suspicious cases were double checked with the developers.

6 out of 15 tests presented feature-interaction problems. However, the number of
problematic interactions was much lower than the number of benign interactions. 17
interactions out of 149 were problematic, which represents less than 12% of the total
interactions. As expected, most of the interactions that appeared in the graphs were
benign. Although the RiSE Event SPL had never been tested before this study, it did
not present a high number of problems, nor problems that cause the program to crash.

Most of the problems we found were related to lack of source code modularity and
incorrect implementation, such as, wrong variable overwrite, misalignment of if state-
ments, and the instantiation of wrong objects. When those problems only appear in the
combination of features, they are harder to be identified by common strategies, because
they need to test all interactions. VarXplorer provides a dynamic inspection process to
detect any feature interactions problem that causes differences in control flow and data
flow of the system. From the insights of this study, we believe that the use of good pro-
gramming practices and design patterns is likely to avoid most of the feature interaction
problems.

7.6 THREATS TO VALIDITY 105

RQ: The results confirm that the analysis of individual and ordered test cases and
the use of reduced graphs (with automatic generated specifications) led to a reduction
of 45% less interactions to judge in median; and 50% less variables when compared
to complete graphs that were not reduced.

7.6 THREATS TO VALIDITY

Construct Validity. For the first test cases, it took 1 hour or more to judge interactions
as either benign or problematic, mainly because in the two first tests, we found suspicious
interactions, and we were not familiar enough with the program yet. Although we have
used the SPL source code for over two weeks to develop the test cases and replace the
annotations, we were not the one responsible for the development of the program. How-
ever, as we executed the next tests, this time of analysis was drastically reduced to few
minutes. For example, for T1, we screened the program for hours, until we realized that
the problem was in the annotations. With the exception of T1 and T2, most of the tests
took less than 20 minutes to be analyzed, as Table 7.3 shows. This reduction is likely due
to the knowledge about the system, which increases as we analyze the next test cases.

The exploratory study was performed by one person using a third party system.
However, before the tests execution, the person had unlimited access to the source code
for over two weeks. During those weeks, several practical sessions were performed with
the presence of the system developers. In addition, the system developers were available
most of the time to answer questions in person, email or chat. Other meetings were also
realized during the execution of the tests to present the intermediary results and validate
the identified feature-interaction problems. The solutions to the problems at source code
were also discussed with them.

Internal Validity. There is no systematic process to create a test suite to discover fea-
ture interactions with variational execution. The test suite of this study was defined with
the developers, and the saturation was achieved when variations in the defined scenarios
did not bring new interactions. Individually, the test cases we used combine multiple ac-
tivities in a single test case. They covered all features and each feature interacted with at
least 3 other features. Besides that, we presented the results to the developers and they
did not miss any interaction.

Hence, the test suite has reasonable, but not complete, coverage. We cannot guarantee
that we covered all possible interactions among all features. Although we potentially may
miss interactions that occur only with other specific scenarios, we executed the program
with representative inputs, which covers all functionalities.

External Validity. RiSE Event SPL has never been tested before, and has no test
case implemented before this study. We implemented 15 test cases and found 11 suspicious
interactions and all of them were solved at source code. We do not have any basis of
comparison related to other testing approach to check their findings related to the RiSE
Event SPL. However, VarXplorer is one of the few tools able to test and identify problems
at runtime. Developers were much faster at identifying interaction problems when using

106 EXPLORATORY STUDY: AN ANALYSIS ON VARXPLORER ITERATIONS

VarXplorer than with another similar tool, as shown on the controlled experiment of
Chapter 6.

The graphs used during this study present from 2 to 22 interactions, and the largest
graph has 8 features. In a real setting, many more features can interact and the graphs
can become too large. Since big graphs may contain many edges, they are more difficult
to analyze. To avoid this, we can divide a long test case into smallest tests. Although this
process creates more graphs to analyze, they present less interactions and facilitates the
process of identifying suspicious interactions.

The RiSE Event SPL presents 20 features and more than 26.000 lines of code. Despite
we have used 15 test cases that comprehend different scenarios, the study was carried
out with one single system and one person as main evaluator. However, all results were
validated with a RiSE Event SPL developer, who participated of the whole process, from
the test suite definition to the solutions for the problematic interactions. Nonetheless, the
reader must be careful when generalizing results beyond the studied system.

7.7 CHAPTER SUMMARY

VarXplorer is an iterative and incremental approach designed to assist developers during
the software development. From a test suite, the graphs generated by VarXplorer present
how pairwise features interact with each other, through suppress and require relationships.
The tool allows developers to define interactions as suspicious or benign through right
clicks on the interaction (edge) that connects two features. Those interactions are used
to remove benign interactions for the next test cases. This process reduces the amount of
information that the developer needs to analyze towards finding problems in the system.
Specifications clean the graphs to help developers to focus only on new interactions that
are likely to present problems. The study presented in this chapter aimed to analyze how
this iterative process reduces the complexity of identifying problems in graphs. We found
that the specifications reduce by about 50% the amount of information that the user
has to analyze. In the next chapter, we present the concluding remarks of our work and
discuss potential future work.

PART V

CONCLUSIONS

Chapter

CONCLUDING REMARKS AND FUTURE WORK

Feature interactions occur when a feature behavior is influenced by the presence of another
feature(s). Typically, interactions may lead to faults that are not easily identified from
the analysis of each feature separately, specially when feature specifications are missing.
Next, we present the contributions made by this thesis and directions to future work.

8.1 THESIS CONTRIBUTIONS

In this thesis, we are pursuing a twofold goal in the context of highly configurable systems:
mapping the state-of-the-art on feature interactions and identifying suspicious interac-
tions without upfront specifications. To fulfill our goals, we made the following contribu-
tions:

1. A systematic mapping study (Chapter 3). We conducted a systematic mapping study
with seven research questions, in which the 40 studies found are mainly classified
regarding the feature interaction solution presented: detection, resolution and gen-
eral analysis. More than 43% of the studies discussed how to identify interactions at
early phases of the SPL development, mainly based on traceability, dependencies,
verification of assertions, feature exclusion, precedence, and adaptation. Another
40% comprised approaches focused on source code to detect and resolve interac-
tions. For example, they were based on: model checkers, non-functional properties
measurements, conditional compilation, and derivatives. The remaining studies pro-
vided an initial discussion about feature interaction management, such as models,
specification and ways to prevent interactions.

In general, we observed the approaches are based on software specifications as the
main strategy to detect interactions. In addition, instead of detecting interactions
from the running software, they provide predictions based on models and static
analysis of source code. Although they are able to detect interactions, deciding
whether a given interaction is benign or represents a bug is still challenging. Fur-
thermore, we noticed that the literature on feature interactions for SPL is poor in
providing evaluations and case studies.

109

110

CONCLUDING REMARKS AND FUTURE WORK

2. VarXplorer (Chapters 4 and 5). To overcome the drawbacks exemplified on previous

item, we provide an approach to iteratively detect interactions and developed a
tool (Eclipse plug-in). We aimed to contribute to the SPL community towards the
identification of suspicious interactions. Our tool, VarXplorer, is able to identify
interactions and relationships between features without upfront specifications.

With VarXplorer, we provide an automatic way to identify feature interactions
based on the software execution. From the execution of a test case, we analyze
interactions based on its control and data flow. Moreover, we present additional
indicators that help developers to identify which interactions may represent a bug,
such as the suppression of one feature by another and the variables involved in the
interaction.

First Study: understanding interaction with the graph (Chapter 6). VarXplorer pro-
poses to organize interactions, conditional variables, and feature relationships as
an interactive feature-interaction graph. To evaluate whether the graph do help
developers to understand and identify suspicious interactions, we performed a con-
trolled experiment with 24 subjects from two universities and four companies. We
measured the effort of a participant, which had to identify a suspicious interaction
using the information provided by the feature-interaction graph. Besides the statis-
tical quantitative analysis, we performed an in-depth qualitative discussion based
on video and audio recordings, and post-treatment interviews.

The results confirmed that participants using VarXplorer are much faster com-
pared to the state-of-the-art tool (Varviz). VarXplorer improves the performance of
identifying suspicious interactions, and it is at least 3 times faster than Varviz. In
addition, we also found that the relationships graphically represented as arrows and
colors in VarXplorer make the developer work easier and faster. Also, VarXplorer
only shows conditional variables, which reduces the amount of information shown
to developers.

Second Study: an analysis on iterations (Chapter 7). In addition to provide feature-
interaction graphs, VarXplorer also presents an iterative approach to identify inter-
actions from a test suite, besides automatically documenting interactions through
feature-interaction specifications. The first study focuses on understanding the
graph and how fast an user identifies suspicious interactions compared to the state-
of-the-art tool. Conversely, this study investigates the iterative process: how much
effort we save using specifications, and how many interactions are cleaned from each
graph during the testing process.

The results showed that when using specifications, the developers see 45% less
interactions on average and they have 50% less variables to analyze. In a test suite,
where test cases are executed sequentially, one after the other, some tests may
present similarities. Interactions judged as benign in previous tests are removed from
the next graphs and the user sees a reduced graph, which has only new interactions
specific to that test that have not been analyzed yet. VarXplorer aims to support
members of a development team identifying real feature-interaction problems (at

8.2 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK 111

runtime) providing a friendly and graphical interface, and reduced information to
make their work faster and more objective.

8.2 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK

In this section, we provide an extra discussion on the directions for future work for
VarXplorer. In addition, we also present potential gaps identified after carrying out the
mapping study.

8.2.1 Potential Future Work for the Approach

Interaction detection. When using our approach, the user may spend less effort in
finding problematic interactions. VarXplorer provides a visualization of all interactions
in a configurable system and highlights feature relationships that may help users to find
bugs. Although we cover all feature combinations in an execution, we use test cases to
detect interactions, and, then, we may miss interactions present in uncovered inputs.
So far, we are not aware of any testing approach focused on finding feature-interaction
problems at runtime, which considers variational execution. For future work, we may
propose a test-case generation to use in combination with our approach to cover the most
representative inputs of a given system.

From the experimental studies, we identified a set of causes of interactions, such as,
wrong object, misplaced variable overwrite, and incorrect conditional statements. We also
found problematic interactions related to spread code and lack of modularity, which may
led to unnecessary control and data dependencies. Although these last two problems may
not necessarily cause software bugs, they negatively impact design quality and software
evolution. For future work, we are interested in investigating how “interaction smells”
impact on software quality; besides how we can find (testing approaches) and resolve
them (recommendations).

VarXplorer uses the variability-aware interpreter, VarexJ, to generate variational
traces [50]. Thus, our approach inherits VarexJ’s technical limitations. For example, it
can only execute Java programs, and analyzing large systems may be computationally
expensive. However, VarXplorer does not depend on VarexJ. The set of presence con-
ditions collected during runtime can be obtained from other variability-aware execution
approaches. Furthermore, we may also obtain information about feature interactions from
symbolic execution [108], static analysis [107], or execution comparison [130].

Technical aspects. Our current approach focuses on pair-wise feature interactions.
While higher-order interactions are less common in practice [50], they do still may lead to
unexpected behavior. In the future, we aim to consider such interactions, which however
come with challenges for scalability and appropriate visualization that need to be solved.
In general, we plan to improve our current preliminary feature interaction graph to enable
easier visualization of systems with a large set of features.

For systems that present many interactions and to overcome scalability issues, as
future work we may allow developers to create sub-graphs. They will be able to choose
which features they want to analyze, and then the tool can create a sub-graph containing

112 CONCLUDING REMARKS AND FUTURE WORK

only the interactions of the selected features.

Feature interaction specification language. The specification of interactions has
two main benefits. Besides helping create the specifications of the system, it contributes
to "clean” the graph by iteratively removing interactions that the user recognizes as
desired or benign. In a graph with many interactions, we provide a way to incrementally
remove benign interactions in each test case. Thus, users can focus their attention only
on suspicious interactions that may represent a problem for the correct operation of the
system. To make the first graph less cluttered and thus easier for the user to interpret,
we could additionally consider already documented global and feature specifications to
filter the interactions accordingly.

8.2.2 Other Directions for Future Work from the Systematic Mapping

Combining strategies. As a way to cover different aspects of an SPL, some strategies
could be used together or even applied to different domains to maximize the use of the
same approach before starting to define a new one. We found few studies that deal with
effectiveness or suitability of combining strategies. For instance, Liu et al. [7] proposed
a tool-based approach to support safe evolution of SPL requirements using a model-
based approach. However, some discussions are still missing. For example, early detection
approaches could benefit from structural (source code) and operational (data and control
flows) analysis to evaluate the efficiency of previously detected interactions. The opposite
could also be interesting, traceability from source code to models.

Domain of smartphones and apps. With the arrival of smartphones and applications,
many other interactions problems may have emerged and could be further investigated,
such as: (i) interactions among apps from the same supplier but different systems families;
(ii) interactions among apps from different suppliers; (iii) interactions between an app
and the mobile operating system; and also (iv) internal interactions to a single app, which
is the most common interaction in the development of systems in general, and has been
the focus of the research community that investigates feature interaction issues.

BIBLIOGRAPHY

1 PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping
studies in software engineering. In: Proc. of the 12th Inter. Conference on FEvaluation
and Assessment in Software Engineering. Swinton, UK: British Computer Society, 2008.
(EASE), p. 68-77.

2 APEL, S.; SCHOLZ, W.; LENGAUER, C.; KASTNER, C. Detecting dependences and
interactions in feature-oriented design. In: IEEE. 2010 IEEFE 21st International Sympo-
sium on Software Reliability Engineering (ISSRE). [S.1.], 2010. p. 161-170.

3 APEL, S.; RHEIN, A. V.; THUM, T.; KASTNER, C. Feature-interaction detection
based on feature-based specifications. Computer Networks, Elsevier, v. 57, n. 12, p. 2399—
2409, 2013.

4 APEL, S.; RHEIN, A. v.; WENDLER, P.; GROSSLINGER, A.; BEYER, D. Strategies
for product-line verification: case studies and experiments. In: IEEE PRESS. Proceedings
of the 2013 International Conference on Software Engineering. [S.1.], 2013. p. 482—491.

5 MUSSBACHER, G.; ARAUJO, J.; MOREIRA, A.; AMYOT, D. AocURN-based mod-
eling and analysis of software product lines. Software Quality Journal, Springer, v. 20,
n. 3-4, p. 645-687, 2012.

6 SCHOLZ, W.; THUM, T.; APEL, S.; LENGAUER, C. Automatic detection of feature
interactions using the java modeling language: an experience report. In: ACM. Proceedings
of the 15th International Software Product Line Conference, Volume 2. [S.1.], 2011. p. 7.

7 LIU, J.; DEHLINGER, J.; SUN, H.; LUTZ, R. State-based modeling to support the
evolution and maintenance of safety-critical software product lines. In: 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07). [S.1.: sn.], 2007. p. 596-608.

8 BESSLING, S.; HUHN, M. Towards formal safety analysis in feature-oriented product
line development. In: SPRINGER. International Symposium on Foundations of Health
Informatics Engineering and Systems. [S.1.], 2013. p. 217-235.

9 RAZZAQ, A.; ABBASI, R. Automated separation of crosscutting concerns: Earlier
automated identification and modularization of cross-cutting features at analysis phase.
In: IEEE. 2012 15th International Multitopic Conference (INMIC). [S.1.], 2012. p. 471~
478.

10 LINSBAUER, L.; LOPEZ-HERREJON, R. E.; EGYED, A. Variability extraction and
modeling for product variants. Software & Systems Modeling, Springer, p. 1-21, 2016.

113

114 BIBLIOGRAPHY

11 BEN-DAVID, S.: STERIN, B.; ATLEE, J. M.; BEIDU, S. Symbolic model checking
of product-line requirements using sat-based methods. In: IEEE. 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE). [S.1], 2015. v. 1, p.
189-199.

12 SCHUSTER, S.; SCHULZE, S.; SCHAEFER, I. Structural feature interaction pat-
terns: Case studies and guidelines. In: Proceedings of the Fighth International Workshop
on Variability Modelling of Software-Intensive Systems. New York, NY, USA: ACM, 2013.
(VaMoS ’14), p. 14:1-14:8. ISBN 978-1-4503-2556-1.

13 ATLEE, J. M.; FAHRENBERG, U.; LEGAY, A. Measuring behaviour interactions
between product-line features. In: Proceedings of the Third FME Workshop on Formal
Methods in Software Engineering. Piscataway, NJ, USA: IEEE Press, 2015. (Formalise
'15), p. 20-25.

14 BREDEREKE, J. Configuring members of a family of requirements using features. In:
Feature Interactions in Telecommunications and Software Systems VIII, ICFI’05, 28-30
June 2005, Leicester, UK. [S.1.]: IOS Press, 2005. p. 96-113.

15 HU, H.; YANG, D.; FU, L.; XIANG, H.; FU, C.; SANG, J.; YE, C.; LI, R. Semantic
web-based policy interaction detection method with rules in smart home for detecting in-
teractions among user policies. IE'T Communications, v. 5, n. 17, p. 2451-2460, November
2011. ISSN 1751-8628.

16 METZGER, A.; BUHNE, S.; LAUENROTH, K.; POHL, K. Considering feature in-
teractions in product lines: Towards the automatic derivation of dependencies between
product variants. In: Feature Interactions in Telecommunications and Software Systems.
[S.L.: s.n.], 2005. p. 198-216.

17 CLASSEN, A.; HEYMANS, P.; SCHOBBENS, P.-Y. What’s in a feature: A require-
ments engineering perspective. In: SPRINGER. International Conference on Fundamen-
tal Approaches to Software Engineering. [S.1.], 2008. p. 16-30.

18 ALFEREZ, M.;: MOREIRA, A.; KULESZA, U.; ARAUJO, J.; MATEUS, R.; AMA-
RAL, V. Detecting feature interactions in SPL requirements analysis models. In: ACM.
Proceedings of the First International Workshop on Feature-Oriented Software Develop-
ment. [S.1.], 2009. p. 117-123.

19 SHAKER, P.; ATLEE, J. M.; WANG, S. A feature-oriented requirements modelling
language. In: IEEE. Requirements Engineering Conference (RE), 2012 20th IEEE Inter-
national. [S.1.], 2012. p. 151-160.

20 BOCOVICH, C.; ATLEE, J. M. Variable-specific resolutions for feature interactions.
In: ACM. Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. [S.1.], 2014. p. 553-563.

BIBLIOGRAPHY 115

21 KIM, C. H. P.; KASTNER, C.; BATORY, D. On the modularity of feature interac-
tions. In: ACM. Proceedings of the 7th international conference on Generative program-
ming and component engineering. [S.1.], 2008. p. 23-34.

22 BLUNDELL, C.; FISLER, K.; KRISHNAMURTHI, S.; HENTENRVCK, P. V. Pa-
rameterized interfaces for open system verification of product lines. In: Proceedings. 19th

International Conference on Automated Software Engineering, 2004. [S.1.: s.n.], 2004. p.
258-267. ISSN 1938-4300.

23 LI, H. C.; KRISHNAMURTHI, S.; FISLER, K. Modular verification of open features
using three-valued model checking. Automated Software Engineering, Springer, v. 12, n. 3,
p. 349-382, 2005.

24 LIU, J.; BATORY, D.; LENGAUER, C. Feature oriented refactoring of legacy applica-
tions. In: ACM. Proceedings of the 28th international conference on Software engineering.
[S.1.], 2006. p. 112-121.

25 SIEGMUND, N.; KOLESNIKOV, S. S.; KiSTNER, C.; APEL, S.; BATORY, D.;
ROSENMULLER, M.; SAAKE, G. Predicting performance via automated feature-
interaction detection. In: Proceedings of the 34th International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2012. (ICSE ’12), p. 167-177. ISBN
978-1-4673-1067-3.

26 KASTNER, C.; APEL, S.; ROSENMULLER, M.: BATORY, D.; SAAKE, G. et al. On
the impact of the optional feature problem: Analysis and case studies. In: CARNEGIE
MELLON UNIVERSITY. Proceedings of the 13th International Software Product Line
Conference. [S.1.], 2009. p. 181-190.

27 PADMANABHAN, P.; LUTZ, R. R. Tool-supported verification of product line re-
quirements. Automated Software Engineering, Springer, v. 12, n. 4, p. 447-465, 2005.

28 SOCHOS, P.; RIEBISCH, M.; PHILIPPOW, I. The feature-architecture mapping
(farm) method for feature-oriented development of software product lines. In: IEEE.

13th Annual IEEFE International Symposium and Workshop on Engineering of Computer
Based Systems - ECBS. [S.1.], 2006. p. 9-pp.

20 BATORY, D.; HOFNER, P.; MOLLER, B.; ZELEND, A. Features, modularity, and
variation points. In: ACM. Proceedings of the 5th International Workshop on Feature-
Oriented Software Development. [S.1], 2013. p. 9-16.

30 TAKEYAMA, F.; CHIBA, S. Implementing feature interactions with generic feature
modules. In: SPRINGER. International Conference on Software Composition. [S.1.], 2013.
p. 81-96.

31 PAREJO, J. A.; SANCHEZ, A. B.; SEGURA, S.; RUIZ-CORTéS, A.; LOPEZ-
HERREJON, R. E.; EGYED, A. Multi-objective test case prioritization in highly con-

figurable systems: A case study. Journal of Systems and Software, v. 122, p. 287 — 310,
2016. ISSN 0164-1212.

116 BIBLIOGRAPHY

32 LOTUFO, R.; SHE, S.; BERGER, T.; CZARNECKI, K.; WaSOWSKI, A. Evolu-
tion of the linux kernel variability model. In: . Berlin, Heidelberg: Springer-Verlag, 2010.
(Proceedings of the International Software Product Lines Conference), p. 136-150. ISBN
3-642-15578-2, 978-3-642-15578-9.

33 ROTHBERG, V.; DINTZNER, N.; ZIEGLER, A.; LOHMANN, D. Feature models in
linux: From symbols to semantics. In: . New York, NY, USA: ACM, 2016. (Proceedings
of the International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS)), p. 65-72. ISBN 978-1-4503-4019-9.

34 APEL, S.; KOLESNIKOV, S.; SIEGMUND, N.; KiSTNER, C.; GARVIN, B. Explor-
ing Feature Interactions in the Wild: The New Feature-interaction Challenge. In: Pro-
ceedings of the 5th International Workshop on Feature-Oriented Software Development.
[S.L.: s.n.], 2013. (FOSD ’13), p. 1-8. ISBN 978-1-4503-2168-6.

35 BOWEN, T. F.; DWORACK, F. S.; CHOW, C. H.; GRIFFETH, N.; HERMAN, G. E.;
LIN, Y. J. The feature interaction problem in telecommunications systems. In: Seventh
International Conference on Software Engineering for Telecommunication Switching Sys-

tems (SETSS). [S.1.: s.n.], 1989. p. 59-62.

36 COHEN, M. B.; DWYER, M. B.; SHI, J. Constructing Interaction Test Suites for
Highly-Configurable Systems in the Presence of Constraints: A Greedy Approach. IEEE
Transactions on Software Engineering, v. 34, n. 5, p. 633-650, 2008.

37 THuM, T.; APEL, S.; KiSTNER, C.; SCHAEFER, 1.; SAAKE, G. A classification
and survey of analysis strategies for software product lines. ACM Comput. Surv., ACM,
New York, NY, USA, v. 47, n. 1, p. 6:1-6:45, jun. 2014. ISSN 0360-0300.

38 KIM, C. H. P.; MARINOV, D.; KHURSHID, S.; BATORY, D.; SOUTO, S.; BARROS,
P.; D'AMORIM, M. Splat: Lightweight dynamic analysis for reducing combina-
torics in testing configurable systems. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. New York, NY, USA: ACM, 2013. (ESEC/FSE
2013), p. 257-267. ISBN 978-1-4503-2237-9.

39 SOUTO, S.; D’AMORIM, M.; GHEYI, R. Balancing Soundness and Efficiency for
Practical Testing of Configurable Systems. In: IEEE PRESS. [S.1.], 2017. p. 632-642.

40 KIM, C. H. P.; BATORY, D.; KHURSHID, S. Eliminating products to test in a
software product line. In: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. New York, NY, USA: ACM, 2010. (ASE ’10), p. 139—
142. ISBN 978-1-4503-0116-9.

41 COHEN, M. B.; DWYER, M. B.; SHI, J. Interaction testing of highly-configurable
systems in the presence of constraints. In: Proceedings of the 2007 International Sympo-
sium on Software Testing and Analysis. New York, NY, USA: ACM, 2007. (ISSTA ’07),
p. 129-139. ISBN 978-1-59593-734-6.

BIBLIOGRAPHY 117

42 MEDEIROS, F.; KiSTNER, C.; RIBEIRO, M.; GHEYT, R.; APEL, S. A comparison
of 10 sampling algorithms for configurable systems. In: Proceedings of the 38th Inter-
national Conference on Software Engineering. New York, NY, USA: ACM, 2016. (ICSE
'16), p. 643-654. ISBN 978-1-4503-3900-1.

43 NIE, C.; LEUNG, H. A survey of combinatorial testing. ACM Comput. Surv., ACM,
New York, NY, USA, v. 43, n. 2, p. 11:1-11:29, fev. 2011. ISSN 0360-0300.

44 LI, H. C.; KRISHNAMURTHI, S.; FISLER, K. Modular verification of open features
using three-valued model checking. Automated Software Engg., Kluwer Academic Pub-
lishers, Hingham, MA, USA, v. 12, n. 3, p. 349-382, jul. 2005. ISSN 0928-8910.

45 APEL, S.; SPEIDEL, H.; WENDLER, P.; RHEIN, A. von; BEYER, D. Detection
of feature interactions using feature-aware verification. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2011. (ASE ’11), p. 372-375. ISBN 978-1-4577-1638-6.

46 RHEIN, E. V.; APEL, S.; RAIMONDI, F. F.: Introducing binary decision diagrams
in the explicit-state verification of java code. In: In: Proc. Java Pathfinder Workshop.
[S.L.: s.n.], 2011.

47 CLASSEN, A.; HEYMANS, P.; SCHOBBENS, P.-Y.; LEGAY, A. Symbolic model
checking of software product lines. In: Proceedings of the 33rd International Conference
on Software Engineering. New York, NY, USA: ACM, 2011. (ICSE '11), p. 321-330. ISBN
978-1-4503-0445-0.

48 BURCH, J.; CLARKE, E.; MCMILLAN, K.; DILL, D.; HWANG, L. Symbolic Model
Checking: 10?2 States and Beyond. In: . [S.L.: s.n.], 1992. v. 98, n. 2, p. 142 — 170. ISSN
0890-5401.

49 NGUYEN, H. V.; KASTNER, C.; NGUYEN, T. N. Exploring variability-aware exe-
cution for testing plugin-based web applications. In: Proceedings of the 36th International
Conference on Software Engineering. New York, NY, USA: ACM, 2014. (ICSE 2014), p.
907-918. ISBN 978-1-4503-2756-5.

50 MEINICKE, J.; WONG, C. P,; KASTNER, C.; THUM, T.; SAAKE, G. On essen-
tial configuration complexity: Measuring interactions in highly-configurable systems. In:
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2016. (ASE 2016), p. 483-494. ISBN 978-1-
4503-3845-5.

51 KIM, C. H. P.; KHURSHID, S.; BATORY, D. Shared execution for efficiently test-
ing product lines. In: 2012 IEEFE 23rd International Symposium on Software Reliability
Engineering. [S.1.: s.n.], 2012. p. 221-230. ISSN 1071-9458.

52 AUSTIN, T. H.; FLANAGAN, C. Multiple Facets for Dynamic Information Flow.
v. 47, n. 1, p. 165-178, 2012.

118 BIBLIOGRAPHY

53 ATLEE, J. M.; FAHRENBERG, U.; LEGAY, A. Measuring behaviour interactions be-
tween product-line features. In: Proceedings of the International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2015. p. 20-25.

54 MOSSER, S.; PARRA, C.; DUCHIEN, L.; BLAY-FORNARINO, M. Using domain
features to handle feature interactions. In: Proceedings of the Sixth International Work-
shop on Variability Modeling of Software-Intensive Systems. New York, NY, USA: ACM,
2012. (VaMoS ’12), p. 101-110. ISBN 978-1-4503-1058-1.

55 GIBSON, J. P.; LALLET, E.; RAFFY, J.-L. Feature interactions in a software product
line for e-voting. In: NAKAMURA, M.; REIFF-MARGANIEC, S. (Ed.). Feature Inter-
actions in Telecommunications and Software Systems (ICFI). [S.1]: 1OS Press, 2009. p.
91-106. ISBN 978-1-60750-014-8.

56 BOWEN, T. F.; DWORACK, F. S.; CHOW, C. H.; GRIFFETH, N.; HERMAN,
G. E.; LIN, Y. J. The feature interaction problem in telecommunications systems. In:
Software Engineering for Telecommunication Switching Systems, 1989. SETSS 89., Sev-
enth International Conference on. [S.1.: s.n.], 1989. p. 59-62.

57 SOARES, L. R.; SCHOBBENS, P.-Y.; MACHADO, I. do C.; ALMEIDA, E. S. de.
Feature interaction in software product line engineering: A systematic mapping study.
Information and Software Technology, p. —, 2018. ISSN 0950-5849.

58 SOARES, L. R.; MEINICKE, J.; NADI, S.; KiSTNER, C.; ALMEIDA, E. S. de. Varx-
plorer: Lightweight process for dynamic analysis of feature interactions. In: Proceedings of

the 12th International Workshop on Variability Modelling of Software-Intensive Systems.
New York, NY, USA: ACM, 2018. (VAMOS 2018), p. 59-66. ISBN 978-1-4503-5398-4.

59 SOARES, L. R. Varxplorer: Reasoning about feature interactions. In: Proceedings of
the 40th International Conference on Software Engineering: Companion Proceeedings.
New York, NY, USA: ACM, 2018. (ICSE ’18), p. 500-502. ISBN 978-1-4503-5663-3.

60 SOARES, L. R.; MEINICKE, J.; NADI, S.; KiSTNER, C.; ALMEIDA, E. S. de.
Exploring feature interactions without specifications: A controlled experiment. In: Pro-

ceedings of the 17th International Conference on Generative Programming: Concepts Fax-
perience. New York, NY, USA: ACM, 2018. (GPCE’18).

61 SOARES, L. R.; MACHADO, I. do C.; ALMEIDA, E. S. de. Non-functional properties
in software product lines: A reuse approach. In: Proceedings of the Ninth International
Workshop on Variability Modelling of Software-intensive Systems. New York, NY, USA:
ACM, 2015. (VaMoS ’15), p. 67:67-67:74. ISBN 978-1-4503-3273-6.

62 SOARES, L. R.; POTENA, P.; MACHADO, I. do C.; CRNKOVIC, I.; ALMEIDA,
E. S. de. Analysis of non-functional properties in software product lines: A systematic
review. In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. [S.1.: sn.], 2014. p. 328-335. ISSN 1089-6503.

BIBLIOGRAPHY 119

63 VALE, T.; CABRAL, B.; ALVIM, L.; SOARES, L.; SANTOS, A.; MACHADO, [
SOUZA, 1.; FREITAS, 1.; ALMEIDA, E. Splice: A lightweight software product line
development process for small and medium size projects. In: IEEE COMPUTER SO-
CIETY. Proceedings of the 2014 FEighth Brazilian Symposium on Software Components,
Architectures and Reuse. [S.1.], 2014. p. 42-52.

64 MEINICKE, J. VarexJ: A Variability-Aware Interpreter for Java Applications. Dis-
sertacao (Mestrado) — University of Magdeburg, dez. 2014.

65 Meinicke, J.; Wong, C.-P.; Kastner, C.; Saake, G. Understanding Differences among
Executions with Variational Traces. ArXiv e-prints, jul. 2018.

66 CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2001. ISBN 0201703327.

67 APEL, S.; KiSTNER, C. An overview of feature-oriented software development. Jour-
nal of Object Technology, v. 8, n. 5, p. 49-84, jul 2009. ISSN 1660-1769.

68 SOARES, L. R.; MACHADO, I. do C.; ALMEIDA, E. S. de. Non-functional properties
in software product lines: A reuse approach. In: Proceedings of the Ninth International
Workshop on Variability Modelling of Software-intensive Systems. New York, NY, USA:
ACM, 2015. (VaMoS ’15), p. 67:67-67:74. ISBN 978-1-4503-3273-6.

69 CZARNECKI, K.; EISENECKER, U. W. Generative Programming: Methods, Tools,
and Applications. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000. ISBN 0-201-30977-7.

70 APEL, S.; KASTNER, C. An overview of feature-oriented software development. Jour-
nal of Object Technology, v. 8, n. 5, p. 49-84, 2009.

71 KRUEGER, C. W. The biglever software gears unified software product line engineer-
ing framework. In: 2008 12th International Software Product Line Conference. [S.1.: s.n.],
2008. p. 353-353.

72 BEUCHE, D. Modeling and building software product lines with pure:: variants. In:
ACM. Proceedings of the 16th International Software Product Line Conference-Volume
2. [S.1.], 2012. p. 255-255.

73 THUM, T.; KASTNER, C.; BENDUHN, F.; MEINICKE, J.: SAAKE, G.; LEICH, T.
Featureide: An extensible framework for feature-oriented software development. Science
of Computer Programming, Elsevier, v. 79, p. 70-85, 2014.

74 SCHMID, K.; EICHELBERGER, H. Easy-producer: From product lines to variability-
rich software ecosystems. In: Proceedings of the 19th International Conference on Software
Product Line. New York, NY, USA: ACM, 2015. (SPLC ’15), p. 390-391. ISBN 978-1-
4503-3613-0.

120 BIBLIOGRAPHY

75 BATORY, D.; HOFNER, P.; KIM, J. Feature interactions, products, and composition.
In: Proceedings of the 10th ACM International Conference on Generative Programming
and Component Engineering. New York, NY, USA: ACM, 2011. (GPCE '11), p. 13-22.
ISBN 978-1-4503-0689-8.

76 BRUNS, G. Foundations for features. In: Feature Interactions in Telecommunications
and Software Systems VIII, ICFI’05, 28-30 June 2005, Leicester, UK. [S.l.: s.n.], 2005.
p. 3-11.

77 MULTIMEDIA-LLC. Featureopt: Taming and optimizing feature interaction in
software-intensive automotive systems. In: Acessed in 07.23.2018. [s.n.], 2018. Disponivel
em: jhttp://iktderzukunft.at/en/projects/feature-opt.php#contactAddress, .

78 DOMINGUEZ, A. L. J. Feature interaction detection in the automotive domain. In:
2008 23rd IEEE/ACM International Conference on Automated Software Engineering.
[S.1.: s.n.], 2008. p. 521-524. ISSN 1938-4300.

79 ZAVE, P.; CHEUNG, E.; YAROSH, S. Toward user-centric feature composition for
the internet of things. ArXiv e-prints arXiv:1510.06714, 2015.

80 CALDER, M.; KOLBERG, M.; MAGILL, E. H.; REIFF-MARGANIEC, S. Feature
interaction: a critical review and considered forecast. Computer Networks, Elsevier North-
Holland, Inc., v. 41, n. 1, p. 115-141, jan 2003. ISSN 1389-1286.

81 DIETRICH, D.; SHAKER, P.; ATLEE, J. M.; RAYSIDE, D.; GORZNY, J. Feature in-
teraction analysis of the feature-oriented requirements-modelling language using Alloy. In:

Proceedings of the Workshop on Model-Driven Engineering, Verification and Validation.
New York, NY, USA: ACM, 2012. (MoDeVVa ’12), p. 17-22. ISBN 978-1-4503-1801-3.

82 RODRIGUES, I.; RIBEIRO, M.; MEDEIROS, F.; BORBA, P.; FONSECA,
B.; GHEYI, R. Assessing fine-grained feature dependencies. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 78, n. C, p. 27-52, out. 2016. ISSN
0950-5849.

83 ABAL, I.; BRABRAND, C.; WASOWSKI, A. 42 variability bugs in the Linux kernel:
A qualitative analysis. In: Proceedings of the 29th ACM/IEEFE International Conference
on Automated Software Engineering. New York, NY, USA: ACM, 2014. (ASE ’14), p.
421-432. ISBN 978-1-4503-3013-8.

84 APEL, S.; KOLESNIKOV, S.; SIEGMUND, N.; KiSTNER, C.; GARVIN, B. Explor-
ing feature interactions in the wild: The new feature-interaction challenge. In: Proceedings

of the 5th International Workshop on Feature-Oriented Software Development. New York,
NY, USA: ACM, 2013. (FOSD ’13), p. 1-8. ISBN 978-1-4503-2168-6.

85 HALL, R. J. Feature combination and interaction detection via foreground/back-
ground models. Computer Networks, v. 32, n. 4, p. 449 — 469, 2000. ISSN 1389-1286.

http://iktderzukunft.at/en/projects/feature-opt.php#contactAddress

BIBLIOGRAPHY 121

86 SCHOBBENS, P.-Y.; HEYMANS, P.; TRIGAUX, J.-C.; BONTEMPS, Y. Generic
semantics of feature diagrams. Comput. Netw., Elsevier North-Holland, Inc., New York,
NY, USA, v. 51, n. 2, p. 456-479, fev. 2007. ISSN 1389-1286.

87 OHTA, T.; HARADA, Y. Classification, detection and resolution of service interac-
tions in telecommunication services. Feature Interactions in Telecommunications Systems,
IOS Press, p. 60, 1994.

88 PLATH, M.; RYAN, M. Feature integration using a feature construct. Science of
Computer Programming, v. 41, n. 1, p. 53 — 84, 2001. ISSN 0167-6423.

89 PREHOFER, C. Feature-oriented programming: A fresh look at objects. In: Proceed-
ings of the 11th European Conference on Object-Oriented Programming (ECOOP’97).
[S.L]: Springer, 1997. v. 1241, p. 419-443.

90 LIU, J. Feature interactions and software derivatives. Journal of Object Technology,
v. 4, 1. 3, p. 13-19, 2004

91 NETO, P. A. da M. S.; MACHADO, I. do C.; MCGREGOR, J. D.; ALMEIDA, E. S.
de; MEIRA, S. R. de L. A systematic mapping study of software product lines testing.
Inf. Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 53, n. 5, p. 407-423,
maio 2011. ISSN 0950-5849.

92 BASTOS, J. F.; NETO, P. A. da M. S.; ALMEIDA, E. S. de; MEIRA, S. R. de L.
Adopting software product lines: A systematic mapping study. In: Evaluation Assessment
in Software Engineering (EASE 2011), 15th Annual Conference on. [S.l.: s.n.], 2011. p.
11-20.

93 SILVA, I. F. da; NETO, P. A. da M. S.; O'LEARY, P.; ALMEIDA, E. S. de; MEIRA,
S. R. de L. Agile software product lines: A systematic mapping study. Softw. Pract.
FExper., John Wiley & Sons, Inc., New York, NY, USA, v. 41, n. 8, p. 899-920, jul. 2011.
ISSN 0038-0644.

94 VALE, T.; ALMEIDA, E. S. de; ALVES, V.; KULESZA, U.; NIU, N.; LIMA, R.
de. Software product lines traceability: A systematic mapping study. Information and
Software Technology, v. 84, p. 1 — 18, 2017. ISSN 0950-5849.

95 KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, P. (Ed.). Evidence-Based Soft-
ware Engineering and Systematic Reviews. Boca Raton, FL, USA: Chapman and Hal-
1/CRC, 2015. ISBN 1482228653.

96 ABDESSALEM, R. B.; PANICHELLA, A.; NEJATI, S.; BRIAND, L. C.; STIFTER,
T. Testing autonomous cars for feature interaction failures using many-objective search.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2018. (ASE 2018), p. 143-154. ISBN 978-1-
4503-5937-5.

122 BIBLIOGRAPHY

97 FILHO, R. S. S.; REDMILES, D. F. Managing feature interaction by documenting
and enforcing dependencies in software product lines. Feature Interactions in Software
and Communication Systems IX, 10S Press, v. 33, 2008.

98 JAYARAMAN, P.; WHITTLE, J.; ELKHODARY, A. M.; GOMAA, H. Model com-
position in product lines and feature interaction detection using critical pair analysis.
In: SPRINGER. International Conference on Model Driven Engineering Languages and
Systems. [S.1.], 2007. p. 151-165.

99 ZHANG, Y.; GUO, J.; BLAIS, E.; CZARNECKI, K.; YU, H. A mathematical model
of performance-relevant feature interactions. In: Proceedings of the 20th International
Systems and Software Product Line Conference. New York, NY, USA: ACM, 2016. (SPLC
’16), p. 25-34. ISBN 978-1-4503-4050-2.

100 NGUYEN, T.; KOC, U.; CHENG, J.; FOSTER, J. S.; PORTER, A. A. igen: Dynamic
interaction inference for configurable software. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. New York,
NY, USA: ACM, 2016. (FSE 2016), p. 655-665. ISBN 978-1-4503-4218-6.

101 ZIBAEENEJAD, M. H.; ZHANG, C.; ATLEE, J. M. Continuous variable-specific
resolutions of feature interactions. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. New York, NY, USA: ACM, 2017. (ESEC/FSE
2017), p. 408-418. ISBN 978-1-4503-5105-8.

102 HU, H.; YANG, D.; FU, L.; XIANG, H.; FU, C.; SANG, J.; YE, C.; LI, R. Semantic
web-based policy interaction detection method with rules in smart home for detecting
interactions among user policies. IET communications, IET, v. 5, n. 17, p. 2451-2460,
2011.

103 CALDER, M.; KOLBERG, M.; MAGILL, E. H.; REIFF-MARGANIEC, S. Feature
interaction: a critical review and considered forecast. Computer Networks, v. 41, n. 1, p.
115 — 141, 2003. ISSN 1389-1286.

104 RHEIN, A. von; GREBHAHN, A.; APEL, S.; SIEGMUND, N.; BEYER, D
BERGER, T. Presence-condition simplification in highly configurable systems. In: . Pis-
cataway, NJ, USA: IEEE Press, 2015. (ICSE), p. 178-188. ISBN 978-1-4799-1934-5.

105 ANGERER, F.; GRIMMER, A, PRAHOFER, H.; GRUNBACHER, P.
Configuration-Aware Change Impact Analysis. In: 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). [S.1.: s.n.], 2016. v. 00, p.
385—-395.

106 BOoHME, M.; OLIVEIRA, B. C. d. S.; ROYCHOUDHURY, A. Regression tests to
expose change interaction errors. In: Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering. New York, NY, USA: ACM, 2013. (ESEC/FSE 2013),
p. 334-344. ISBN 978-1-4503-2237-9.

BIBLIOGRAPHY 123

107 LILLACK, M.; KASTNER, C.; BODDEN, E. Tracking load-time configuration op-
tions. In: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2014. (ASE '14), p. 445-456. ISBN
978-1-4503-3013-8.

108 REISNER, E.; SONG, C.; MA, K.-K.; FOSTER, J. S.; PORTER, A. Using symbolic
evaluation to understand behavior in configurable software systems. In: Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering - Volume 1. New
York, NY, USA: ACM, 2010. (ICSE ’10), p. 445-454. ISBN 978-1-60558-719-6.

109 LAUENROTH, K.; POHL, K.; TOEHNING, S. Model checking of domain artifacts
in product line engineering. In: Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2009. (ASE ’09), p. 269-280. ISBN 978-0-7695-3891-4.

110 KA&ASTNER, C.; RHEIN, A. von; ERDWEG, S.; PUSCH, J.; APEL, S.; RENDEL,
T.; OSTERMANN, K. Toward variability-aware testing. In: Proceedings of the jth In-
ternational Workshop on Feature-Oriented Software Development. New York, NY, USA:
ACM, 2012. (FOSD ’12), p. 1-8. ISBN 978-1-4503-1309-4.

111 NADI, S.; BERGER, T.; KASTNER, C.; CZARNECKI, K. Mining configuration
constraints: Static analyses and empirical results. In: . New York, NY, USA: ACM, 2014.
(ICSE), p. 140-151. ISBN 978-1-4503-2756-5.

112 MAITY, S.; NAYAK, A. Improved test generation algorithms for pair-wise testing.
In: 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05).
[S.1: 8.1, 2005. p. 10 pp.-244. ISSN 1071-9458.

113 AVILA-GEORGE, H.; TORRES-JIMENEZ, J.; IZQUIERDO-MARQUEZ, I. Im-
proved pairwise test suites for non-prime-power orders. IET Software, v. 12, n. 3, p.
215224, 2018. ISSN 1751-8806.

114 LIEBIG, J.; RHEIN, A. von; KASTNER, C.; APEL, S.; DORRE, J.; LENGAUER,
C. Scalable analysis of variable software. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. New York, NY, USA: ACM, 2013. (ESEC/FSE
2013), p. 81-91. ISBN 978-1-4503-2237-9.

115 HEIMAN, G. W. Basic statistics for the behavioral sciences. [S.1.]: Cengage Learning,
2013.

116 DEAN, A. Experimental design: Overview. In: SMELSER, N. J.; BALTES, P. B.
(Ed.). International Encyclopedia of the Social Behavioral Sciences. Oxford: Pergamon,
2001. p. 5090 — 5096. ISBN 978-0-08-043076-8.

117 BEYER, H.; HOLTZBLATT, K. Contextual Design: Defining Customer-Centered
Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997. ISBN 1-
55680-411-1.

124 BIBLIOGRAPHY

118 BEN-DAVID, S.; STERIN, B.; ATLEE, J. M.; BEIDU, S. Symbolic model checking
of product-line requirements using sat-based methods. In: Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1. Piscataway, NJ, USA: IEEE
Press, 2015. (ICSE ’15), p. 189-199. ISBN 978-1-4799-1934-5.

119 APEL, S.; RHEIN, A. v.; WENDLER, P.; LINGER, A. G.; BEYER, D. Strategies
for product-line verification: Case studies and experiments. In: Proceedings of the 2013

International Conference on Software Engineering. Piscataway, NJ, USA: IEEE Press,
2013. (ICSE '13), p. 482-491. ISBN 978-1-4673-3076-3.

120 APEL, S.; RHEIN, A. V.; THuM, T.; KiSTNER, C. Feature-interaction detection
based on feature-based specifications. Comput. Netw., Elsevier North-Holland, Inc., New
York, NY, USA, v. 57, n. 12, p. 2399-2409, ago. 2013. ISSN 1389-1286.

121 GRIFFETH, N.; BLUMENTHAL, R.; GREGOIRE, J.-C.; OHTA, T. Feature in-
teraction detection contest of the fifth international workshop on feature interactions.
Computer Networks, v. 32, n. 4, p. 487 — 510, 2000. ISSN 1389-1286.

122 BOX, G. E.; HUNTER, J. S.; HUNTER, W. G. Statistics for experimenters: design,

innovation, and discovery. [S.1.]: Wiley-Interscience New York, 2005. v. 2.

123 MELO, J.; BRABRAND, C.; WaSOWSKI, A. How Does the Degree of Variability
Affect Bug Finding? In: . [S.1.]: ACM, 2016. p. 679-690.

124 LILLACK, M.; KASTNER, C.; BODDEN, E. Tracking Load-Time Configuration
Options. IEEE, 2017.

125 ARZT, S.; RASTHOFER, S.; FRITZ, C.; BODDEN, E.; BARTEL, A.; KLEIN, J;
TRAON, Y. L.; OCTEAU, D.; MCDANIEL, P. Flowdroid: Precise Context, Flow, Field,
Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. ACM, v. 49, n. 6,
p. 259-269, 2014.

126 WONG, C.-P.; MEINICKE, J.; LAZAREK, L.; KASTNER, C. Faster Variational
Execution with Transparent Bytecode Transformation. In: ACM. [S.1.], 2018.

127 HENTSCHEL, M.; HAHNLE, R.; BUBEL, R. The interactive verification debug-
ger: Effective understanding of interactive proof attempts. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. New York,
NY, USA: ACM, 2016. (ASE 2016), p. 846-851. ISBN 978-1-4503-3845-5.

128 ZELLER, A. Isolating cause-effect chains from computer programs. In: Proceedings
of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering. New
York, NY, USA: ACM, 2002. (SIGSOFT ’02/FSE-10), p. 1-10. ISBN 1-58113-514-9.

129 SUMNER, W. N.; ZHANG, X. Algorithms for automatically computing the causal
paths of failures. In: Proceedings of the 12th International Conference on Fundamental
Approaches to Software Engineering: Held As Part of the Joint Furopean Conferences

BIBLIOGRAPHY 125

on Theory and Practice of Software, ETAPS 2009. Berlin, Heidelberg: Springer-Verlag,
2009. (FASE ’09), p. 355-369. ISBN 978-3-642-00592-3.

130 SUMNER, W. N.; ZHANG, X. Comparative causality: Explaining the differences
between executions. In: Proceedings of the 2013 International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 272-28]1.

131 APEL, S.; SPEIDEL, H.; WENDLER, P.; RHEIN, A. von; BEYER, D. Detection of
Feature Interactions Using Feature-Aware Verification. In: . [S.1.: s.n.], 2011. p. 372-375.

132 NETO, P. A. d. M. S.; SANTANA, T. L. d.; ALMEIDA, E. S. d.; CAVALCANTI,
Y. C. Rise events — a testbed for software product lines experimentation. In: 2016
IEEE/ACM 1st International Workshop on Variability and Complexity in Software De-
sign (VACE). [S.1.: s.n.], 2016. p. 12-13.

133 AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 1. ed. New York, NY,
USA: Cambridge University Press, 2008. ISBN 0521880386, 9780521880381.

Lcl

Appendix

SYSTEMATIC MAPPING: SUPPORT MATERIAL

This appendix presents extra information related to the mapping study presented in this thesis, earlier addressed in Chapter
3. In the next sections, we show the summary of primary studies discussed in the mapping.

A.1 SUMMARY OF STUDIES

Table A.1: Primary studies

Study Title Reference Category Lifecycle FI type Tool
P1 Parameterized interfaces for open system verification of [22] De DD functional
product lines
P2 Considering feature interactions in product lines: To- [16] De DA functional

wards the automatic derivation of dependencies be-
tween product variants

P3 Modular verification of open features using three-valued [23] De DD functional
model checking

P4 Tool-supported verification of product line requirements [27] Re DA/DD functional v

P5 Configuring members of a family of requirements using [14] Ae DA functional v

features

Table A.1: Primary studies

Study Title Reference Category Lifecycle FI type Tool

P6 The feature-architecture mapping (FArM) method for [28] Re DA/DD functional v
feature-oriented development of software product lines

P7 Feature oriented refactoring of legacy applications [24] Rsc DI/PC structural v

P8 Managing feature interaction by documenting and en- [97] Rsc DA/DD/DI structural
forcing dependencies in software product lines

P9 State-based modeling to support the evolution and [7] De DA/DD functional v
maintenance of safety-critical software product lines

P10 Model composition in product lines and feature interac- [98] De/Re DD functional v
tion detection using critical pair analysis

P11 On the modularity of feature interactions [21] Asc DI/PC structural v

P12 What’s in a feature: A requirements engineering per- [17] De DA/DD functional v
spective

P13 Feature interactions in a software product line for E- [55] Ae DD functional
voting

P14 Detecting feature interactions in SPL requirements anal- [18] De DA/DD functional
ysis models

P15 On the impact of the optional feature problem: Analysis [26] Rsc DI/PC structural
and case studies

P16 Detecting dependences and interactions in feature- 2] De/Re DA/DD functional Vv
oriented design

P17 Semantic web-based policy interaction detection method [102] De DA/DD functional
with rules in smart home for detecting interactions
among user policies

P18 Automatic detection of feature interactions using the [6] Dsc DD/DI/PC structural v
java modeling language: An experience report

P19 Automated separation of crosscutting concerns: Earlier [9] De DA/DD functional Vv
automated identification and modularization of cross-
cutting features at analysis phase

P20 AoURN-based modeling and analysis of software prod- [5] De/Re DA/DD functional Vv
uct lines

P21 Using domain features to handle feature interactions [54] Re DA/DD/PC functional

P22 Feature interaction analysis of the feature-oriented [81] De DD functional v

requirements-modelling language using alloy

8¢CI

TVIHHLVIN 2H0OddNS “ONIddVIN DILVINHILSAS

Table A.1: Primary studies

Study Title Reference Category Lifecycle FI type Tool
P23 A feature-oriented requirements modelling language [19] Ae DA/DD functional/
intended

P24 Predicting performance via automated feature- [25] Dsc PC non-func v
interaction detection

P25 Features, modularity, and variation points [29] Rsc DD/DI/PC structural

P26 Feature-interaction detection based on feature-based [3] Dsc DD/DI/PC functional v
specifications

P27 Implementing feature interactions with generic feature [30] Rsc DI/PC structural/
modules intended

P28 Towards formal safety analysis in feature-oriented prod- [8] De DA/DD functional Vv
uct line development

P29 Strategies for product-line verification: case studies and [4] DSC DI/PC functional v
experiments

P30 Variable-specific resolutions for feature interactions [20] Re DA/DD functional

P31 Structural feature interaction patterns: case studies and [12] Dsc DI structural
guidelines

P32 Symbolic model checking of product-line requirements [11] De DA/DD functional Vv
using SAT-based methods

P33 Measuring behaviour interactions between product-line [13] De DD functional
features

P34 Variability extraction and modeling for product variants [10] Dsc/Rsc DI/PC structural

P35 Assessing fine-grained feature dependencies [82] Dsc DI operational v’

SHIANLS 40 AYVININAS T'V

6¢1

A.2 LIST OF THE NEWEST STUDIES, COLLECTED AFTER THE UPDATE

Table A.2: Continuation of the Primary studies

Study Title Reference Category Lifecycle FI type Tool

P36 A Mathematical Model of Performance-Relevant Fea- [22] Dsc pPC non-func
ture Interactions

P37 Continuous Variable-Specific Resolutions of Feature In- [16] Rsc/runtime DI/PC functional
teractions

P38 iGen: Dynamic Interaction Inference for Configurable [23] Dsc/runtime PC functional v
Software

P39 Testing Autonomous Cars for Feature Interaction Fail- [82] De DD functional
ures using Many-Objective Search

P40 On Essential Configuration Complexity: Measuring In- [82] Dsc/runtime PC functional v

teractions in Highly-Configurable Systems

0€T

TVIHHLVIN 2H0OddNS “ONIddVIN DILVINHILSAS

Appendix

CONTROLLED EXPERIMENT: DATA AND SUPPORT
MATERIAL

This appendix lists the documentation, data, script, and support material used in the
experimental study, earlier addressed in Chapter 6.
This appendix is organized as follows:

Section B.1 presents the online survey used to get the profile of each participant;

Section B.2 shows the experiment tasks, i.e., the instructions followed by the partici-
pants during the experiment execution;

Section B.3 presents the time spent by each participant to execute the tasks;

Section B.4 shows the R script used for the statistical analysis;

B.1 ONLINE PRE-SURVEY (BACKGROUND FORM)

131

Background Form 18/07/18 17:14

Background Form

Controlled Experiment Background Form

* Required

1. Email address *

2. Full Name *

3. Institution *

4. Institution position (please mark all options that apply to you) *
Check all that apply.

Undergraduate student
Master Student

PhD. student

Tester

Software engineer
Developer

Other:

TECHNICAL KNOWLEDGE

5. How many years of programming experience do you have using any programming
language? *
Mark only one oval.

<1 year
>= 1 year and < 5 years
>= 5 years and < 10 years

>= 10 years

https://docs.google.com/forms/d/1E7FZ5-aHbXbVovYNOHzlsdUDB6MwZNZvoGagtsgnWzzE/printform Page 1 of 2

Background Form 18/07/18 17:14

6. How many years of experience do you have in JAVA development? *
Mark only one oval.

<1 year
>=1 year and < 5 years
>= 5 years and < 10 years

>= 10 years

7. How many years of experience do you have in using Eclipse IDE for programming? *
Mark only one oval.

<1 year
>= 1 year and < 5 years
>= 5 years and < 10 years

>= 10 years

Skip to question 7.

Additional Information

8. Regarding your Highly Configurable Systems (HCS) and Software Product Line (SPL)
background knowledge *

Mark only one oval.

| have been involved in software development teams applying HCS/SPL techniques
| am a researcher working on topics related to HCS/SPL Development

I know what HCS/SPL are but | have never participated in a software project applying
HCS/SPL development

| have never heard about HCS/SPL
Other:

B Google Forms

https://docs.google.com/forms/d/1E7FZ5-aHbXbVovYNOHzlsdUDB6MwZNZvoGagtsgnWzzE/printform Page 2 of 2

134 CONTROLLED EXPERIMENT: DATA AND SUPPORT MATERIAL

B.2 EVALUATION: INSTRUCTIONS FOR PARTICIPANTS

Group 1

Schedule
1. Warm-up 1: Varviz - WordPress
2. Task 1: VarXplorer - Telephone
3. Warm-up 2: VarXplorer - Wordpress
4. Task 2: Varviz - Elevator

Warm-up: Varviz - WordPress

Steps:
- Feature interaction definition
- Experiment objective: identifying bugs related to feature interactions
- Introduction to Varviz: trace (diamonds, expressions, statements, variables)
- Example based on the WordPress

WordPress main Features:
Smiley: replaces characters with smiley faces.
Fahrenheit: displays temperature in Fahrenheit
Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:
- you are given a WordPress test case that shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the Varviz plug-
in when executing the test case.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Something that does not agree with the requirements? Why?

Task #1 Varviz - ELEVATOR

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Elevator: It is an elevator model that is extensible by various features such as stopping if the
elevator is empty or priority service for a special floor.

Elevator main Features:

e 2/3- full: When the lift detects that it is more than two-thirds full, it does not stop in response to landing
calls, since it is unlikely to be able to accept more passengers. Instead, it gives priority to passengers
already inside the lift, as serving them will help reduce its load.

e Overloaded: When the lift is overloaded, the doors will not close. Some passengers must get out.

e Executive floor: The lift gives priority to calls from the executive floor.

e Weight: Updates the weight when someone gets inside or gets out.

Program details:
e Timeshift method: it executes one movement per time: either moves up or moves down or opens the door
(someone gets in) or closes the door (and moves)
e respectFloorCalls variable (related to the feature 2/3- full):
m Boolean value that when false the elevator does not attend the calls until the weight is less
than 2/3.
e Additional information:
o Max Weight: 100kg
o Executive floor: 4™
o 213 full: above 67kg

Test case scenario:

Three people need to use the elevator. The first two (Alice and Angeline) call at the same time when the
elevator is idle at the 4th floor. Then, after it picks the 2nd girl and right after closing the door at the 2nd floor, the 3rd
person (Bob) calls it. The elevator, then, moves two times (either goes up or goes down). What does it should do in
those movements?

e Elevator starts on 4th floor
e 2 people call at the same time:
m Call: Alice (40kg) from 3rd to O floor
m Call: Angelina (40kg) from 2nd to 1st floor
e Elevator moves until it picks Angelina up.
e New call when the elevator is in the 2nd floor: Bob from 4th to O floor
e Elevator moves 2 times

Task Description

4) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when executing the tesrt.

5) Describe what you understand from the interactions presented in the graph.

6) Are there any suspicious interaction? Why?

Warm-up: VarXplorer - WordPress

Steps:
- Introduction to VarXplorer: features and relationships (suppress and enable)
- Example based on the WordPress

WordPress main Features:
o Smiley: replaces characters to smile faces.

o Fahrenheit: temperature is displayed in Fahrenheit
e Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:

e The program shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when execute the tasks.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Why?

Task #1 TELEPHONE SYSTEM

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Telephone main Features:
e Call forwarding busy line (CFB): All calls to the subscribing line are redirected to a predetermined number when the
line is busy.
e Call Waiting: allows the subscriber to be noticed that another party (incoming call) is trying to reach his number while
her line is busy, and to accept the new call by placing the original call on hold.

Program details:
e Timeshift() method: executes one action per time (eg., setting caller as off/on hook, starting ringing)
e disconnectCaller() method: disconnects the caller (putting as on hook)
e Call.onhold variable: true when call is on waiting (controlled by the feature Call Waiting)

Test case scenario:
The system receives a call from Alice to Sophie. Unfortunately, Sophie is busy and cannot receive the call.
Sophie has enabled the call waiting option to be executed when she is busy.
e Alice calls to Sophie
e Sophie is busy
e Sophie is subscribed to call waiting.
e Sophie did not choose any person to the call be forwarded.

Task Description

7) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when execute the tasks.

8) Describe what you understand from the interactions you can perceive in the trace.

9) Is there any suspicious interaction? Why?

Group 2

Schedule

5. Warm-up 1: Varviz - WordPress

6. Task 1: VarXplorer - Telephone

7. Warm-up 2: VarXplorer - Wordpress
8. Task 2: Varviz - Elevator

Warm-up: Varviz - WordPress

Steps:
- Feature interaction definition
- Experiment objective: identifying bugs related to feature interactions
- Introduction to Varviz: trace (diamonds, expressions, statements, variables)
- Example based on the WordPress

WordPress main Features:
Smiley: replaces characters with smiley faces.
Fahrenheit: displays temperature in Fahrenheit
Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:
- you are given a WordPress test case that shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the Varviz plug-
in when executing the test case.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Something that does not agree with the requirements? Why?

Task #1 TELEPHONE SYSTEM

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Telephone main Features:
e Call forwarding busy line (CFB): All calls to the subscribing line are redirected to a predetermined number when the
line is busy.
e Call Waiting: allows the subscriber to be noticed that another party (incoming call) is trying to reach his number while
her line is busy, and to accept the new call by placing the original call on hold.

Program details:
e Timeshift() method: executes one action per time (eg., setting caller as off/on hook, starting ringing)
e disconnectCaller() method: disconnects the caller (putting as on hook)
e Call.onhold variable: true when call is on waiting (controlled by the feature Call Waiting)

Test case scenario:
The system receives a call from Alice to Sophie. Unfortunately, Sophie is busy and cannot receive the call.
Sophie has enabled the call waiting option to be executed when she is busy.
Alice calls to Sophie
Sophie is busy
Sophie is subscribed to call waiting.
Sophie did not choose any person to the call be forwarded.

Task Description

7) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when execute the tasks.

8) Describe what you understand from the interactions you can perceive in the trace.

9) Is there any suspicious interaction? Why?

Warm-up: VarXplorer - WordPress

Steps:
- Introduction to VarXplorer: features and relationships (suppress and enable)
- Example based on the WordPress

WordPress main Features:
o Smiley: replaces characters to smile faces.
o Fahrenheit: temperature is displayed in Fahrenheit
e Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:

e The program shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when execute the tasks.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Why?

Task #1 VarXplorer - ELEVATOR

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Elevator: It is an elevator model that is extensible by various features such as stopping if the
elevator is empty or priority service for a special floor.

Elevator main Features:

e 2/3- full: When the lift detects that it is more than two-thirds full, it does not stop in response to landing
calls, since it is unlikely to be able to accept more passengers. Instead, it gives priority to passengers
already inside the lift, as serving them will help reduce its load.

e Overloaded: When the lift is overloaded, the doors will not close. Some passengers must get out.

e Executive floor: The lift gives priority to calls from the executive floor.

e Weight: Updates the weight when someone gets inside or gets out.

Program details:
e Timeshift method: it executes one movement per time: either moves up or moves down or opens the door
(someone gets in) or closes the door (and moves)
e respectFloorCalls variable (related to the feature 2/3- full):
m Boolean value that when false the elevator does not attend the calls until the weight is less
than 2/3.
e Additional information:
o Max Weight: 100kg
o Executive floor: 4™
o 213 full: above 67kg

Test case scenario:

Three people need to use the elevator. The first two (Alice and Angeline) call at the same time when the
elevator is idle at the 4th floor. Then, after it picks the 2nd girl up and right after closing the door at the 2nd floor, the
3rd person (Bob) calls it. The elevator, then, moves two times (either goes up or goes down). What does it should do
in those movements?

e Elevator starts on 4th floor
e 2 people call at the same time:
m Call: Alice (40kg) from 3rd to O floor
m Call: Angelina (40kg) from 2nd to 1st floor

Elevator moves until it picks Angelina up.

New call when the elevator is in the 2nd floor: Bob from 4th to 0 floor

Elevator moves 2 times

Task Description

4) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when executing the tesrt.

5) Describe what you understand from the interactions presented in the graph.

6) Are there any suspicious interaction? Why?

Group 3

Schedule

9. Warm-up 1: VarXplorer - WordPress
10. Task 1: VarXplorer - Telephone

11. Warm-up 2: Varviz - Wordpress

12. Task 2: Varviz - Elevator

Warm-up: VarXplorer - WordPress

Steps:
- Feature interaction definition
- Experiment objective: identifying bugs related to feature interactions
- Introduction to VarXplorer: trace (diamonds, expressions, statements, variables)
- Example based on the WordPress

WordPress main Features:
Smiley: replaces characters with smiley faces.
Fahrenheit: displays temperature in Fahrenheit
Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:
- you are given a WordPress test case that shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the Varviz plug-
in when executing the test case.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Something that does not agree with the requirements? Why?

Task #1 TELEPHONE SYSTEM

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Telephone main Features:
e Call forwarding busy line (CFB): All calls to the subscriber line are redirected to a predetermined number when the
line is busy.
e Call Waiting: allows the subscriber to be noticed that another party (incoming call) is trying to reach his number while
her line is busy, and to accept the new call by placing the original call on hold.

Program details:
e Timeshift() method: executes one action per time (eg., setting caller as off/on hook, starting ringing)
e disconnectCaller() method: disconnects the caller (putting as on hook)
e Call.onhold variable: true when call is on waiting (controlled by the feature Call Waiting)

Test case scenario:
The system receives a call from Alice to Sophie. Unfortunately, Sophie is busy and cannot receive the call.
Sophie has enabled the call waiting option to be executed when she is busy.
Alice calls to Sophie
Sophie is busy
Sophie is subscribed to call waiting.
Sophie did not choose any person to the call be forwarded.

Task Description

7) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when execute the tasks.

8) Describe what you understand from the interactions you can perceive in the trace.

9) Is there any suspicious interaction? Why?

Warm-up: Varviz - WordPress

Steps:
- Introduction to VarXplorer: features and relationships (suppress and enable)
- Example based on the WordPress

WordPress main Features:
o Smiley: replaces characters to smile faces.

o Fahrenheit: temperature is displayed in Fahrenheit
e Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:

e The program shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when execute the tasks.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Why?

Task #1 Varviz - ELEVATOR

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Elevator: It is an elevator model that is extensible by various features such as stopping if the
elevator is empty or priority service for a special floor.

Elevator main Features:

e 2/3- full: When the lift detects that it is more than two-thirds full, it does not stop in response to landing
calls, since it is unlikely to be able to accept more passengers. Instead, it gives priority to passengers
already inside the lift, as serving them will help reduce its load.

e Overloaded: When the lift is overloaded, the doors will not close. Some passengers must get out.

e Executive floor: The lift gives priority to calls from the executive floor.

e Weight: Updates the weight when someone gets inside or gets out.

Program details:
e Timeshift method: it executes one movement per time: either moves up or moves down or opens the door
(someone gets in) or closes the door (and moves)
e respectFloorCalls variable (related to the feature 2/3- full):
m Boolean value that when false the elevator does not attend the calls until the weight is less
than 2/3.
e Additional information:
o Max Weight: 100kg
o Executive floor: 4™
o 213 full: above 67kg

Test case scenario:

Three people need to use the elevator. The first two (Alice and Angeline) call at the same time when the
elevator is idle at the 4th floor. Then, after it picks the 2nd girl up and right after closing the door at the 2nd floor, the
3rd person (Bob) calls it. The elevator, then, moves two times (either goes up or goes down). What does it should do
in those movements?

e Elevator starts on 4th floor
e 2 people call at the same time:
m Call: Alice (40kg) from 3rd to O floor
m Call: Angelina (40kg) from 2nd to 1st floor

Elevator moves until it picks Angelina up.

New call when the elevator is in the 2nd floor: Bob from 4th to 0 floor

Elevator moves 2 times

Task Description

4) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when executing the tesrt.

5) Describe what you understand from the interactions presented in the graph.

6) Are there any suspicious interaction? Why?

Group 4

Schedule
13. Warm-up 1: VarXplorer - WordPress
14. Task 1: VarXplorer - Elevator
15. Warm-up 2: Varviz - Wordpress
16. Task 2: Varviz - Telephone

Warm-up: VarXplorer - WordPress

Steps:
- Feature interaction definition
- Experiment objective: identifying bugs related to feature interactions
- Introduction to VarXplorer: features and relationships (suppress and enable)
- Example based on the WordPress

WordPress main Features:
Smiley: replaces characters with smiley faces.
Fahrenheit: displays temperature in Fahrenheit
Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:
- you are given a WordPress test case that shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the VarXplorer
plug-in when executing the test case.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Something that does not agree with the requirements? Why?

Task #1 VarXplorer - ELEVATOR

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Elevator: It is an elevator model that is extensible by various features such as stopping if the
elevator is empty or priority service for a special floor.

Elevator main Features:

e 2/3- full: When the lift detects that it is more than two-thirds full, it does not stop in response to landing
calls, since it is unlikely to be able to accept more passengers. Instead, it gives priority to passengers
already inside the lift, as serving them will help reduce its load.

e Overloaded: When the lift is overloaded, the doors will not close. Some passengers must get out.

e Executive floor: The lift gives priority to calls from the executive floor.

e Weight: Updates the weight when someone gets inside or gets out.

Program details:
e Timeshift method: it executes one movement per time: either moves up or moves down or opens the door
(someone gets in) or closes the door (and moves)
e respectFloorCalls variable (related to the feature 2/3- full):
m Boolean value that when false the elevator does not attend the calls until the weight is less
than 2/3.
e Additional information:
o Max Weight: 100kg
o Executive floor: 4™
o 213 full: above 67kg

Test case scenario:

Three people need to use the elevator. The first two (Alice and Angeline) call at the same time when the
elevator is idle at the 4th floor. Then, right after it picks the second girl up and closes the door at the 2nd floor, the
third person (Bob) calls the elevator. The elevator, then, moves two times (either goes up or goes down). What does
it should do in those movements?

e Elevator starts on 4th floor
e 2 people call at the same time:
m Call: Alice (40kg) from 3rd to O floor
m Call: Angelina (40kg) from 2nd to 1st floor
e Elevator moves until it picks Angelina up.
e New call when the elevator is in the 2nd floor: Bob from 4th to 0 floor
e Elevator moves 2 times. What does it should do?

Task Description
1) Try to understand how the features interact. In this case, you should leverage the VarXplorer plug-in
when executing the tesrt.
2) Describe what you understand from the interactions presented in the graph.
3) Are there any suspicious interaction? Why?

Warm-up: Varviz - WordPress

Goals:
- Introduction to Varviz: trace (diamonds, expressions, statements, variables)
- Example based on the WordPress

WordPress main Features:
e Smiley: replaces characters to smile faces.
e Fahrenheit: temperature is displayed in Fahrenheit
e Weather: presents the current weather in either Celsius or Fahrenheit

Test case scenario:

e The program shows the current temperature to the user.

Task Description

1) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when execute the tasks.

2) Describe what you understand from the interactions presented in the graph.

3) Is there any suspicious interaction? Why?

Task #2 Varviz - TELEPHONE SYSTEM

You have at most 30 minutes to try understanding the interactions and tell us whether they represent a bug or not.

Telephone main Features:
e Call forwarding busy line (CFB): All calls to the subscribing line are redirected to a predetermined number when the
line is busy.
e Call Waiting: allows the subscriber to be noticed that another party (incoming call) is trying to reach his number while
her line is busy, and to accept the new call by placing the original call on hold.

Program details:
e Timeshift() method: executes one action per time (eg., setting caller as off/on hook, starting ringing)
e disconnectCaller() method: disconnects the caller (putting as on hook)
e Call.onhold variable: true when call is on waiting (controlled by the feature Call Waiting)

Test case scenario:
The system receives a call from Alice to Sophie. Unfortunately, Sophie is busy and cannot receive the call.
Sophie has enabled the call waiting option to be executed when she is busy.
Alice calls to Sophie
Sophie is busy
Sophie is subscribed to call waiting.
Sophie did not choose any person to the call be forwarded.

Task Description

7) Try to understand how the features interact. In this case, you should leverage the Varviz plug-in
when execute the tasks.

8) Describe what you understand from the interactions you can perceive in the trace.

9) Is there any suspicious interaction? Why?

B.3 EVALUATION: THE TIME MEASURED FOR THE PARTICIPANTS

B.3 EVALUATION: THE TIME MEASURED FOR THE PARTICIPANTS

Group | OrderTool OrderSys System Tool | Time
GEZ VarvizF'irst ElevFirst Elevator Varviz | 666
GEZ VarvizFirst ElevFirst Elevator Varviz | 661
GEZ VarvizFirst ElevFirst Elevator Varviz | 600
GEZ VarvizFirst ElevFirst Elevator Varviz | 705
GEZ VarvizFirst ElevFirst Elevator Varviz | 463
GEZ VarvizSecond | ElevSecond | Elevator | Varviz | 467
GEZ VarvizSecond | ElevSecond | Elevator | Varviz | 435
GEZ VarvizSecond | ElevSecond | Elevator | Varviz | 457
GEZ VarvizSecond | ElevSecond | Elevator | Varviz | 596
GEZ VarvizSecond | ElevSecond | Elevator Varviz | 430
GEZ VarvizFirst ElevFirst Elevator Varviz | 763
GEZ VarvizSecond | ElevSecond | Elevator | Varviz | 489
GEX VarXpSecond | ElevSecond | Elevator VarXp | 220
GEX VarXpSecond | ElevSecond | Elevator | VarXp | 216
GEX VarXpSecond | ElevSecond | Elevator | VarXp | 172
GEX VarXpSecond | ElevSecond | Elevator | VarXp | 130
GEX VarXpSecond | ElevSecond | Elevator VarXp | 261
GEX VarXpFirst ElevFirst Elevator VarXp | 196
GEX VarXpFirst ElevFirst Elevator VarXp | 264
GEX VarXpFirst ElevFirst Elevator VarXp | 154
GEX VarXpFirst ElevFirst Elevator VarXp | 287
GEX VarXpFirst ElevFirst Elevator | VarXp | 259
GEX VarXpSecond | ElevSecond | Elevator VarXp | 208
GEX VarXpFirst ElevFirst Elevator VarXp | 133
GTZ VarvizFirst TelepFirst Telephone | Varviz | 778
GTZ VarvizFirst TelepFirst Telephone | Varviz | 500
GTZ VarvizFirst TelepFirst Telephone | Varviz | 649
GTZ VarvizFirst TelepFirst Telephone | Varviz | 601
GTZ VarvizFirst TelepFirst Telephone | Varviz | 615
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 580
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 724
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 549
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 457
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 709
GTZ VarvizFirst TelepFirst Telephone | Varviz | 519
GTZ VarvizSecond | TelepSecond | Telephone | Varviz | 526
GTX VarXpSecond | TelepSecond | Telephone | VarXp | 281
GTX VarXpSecond | TelepSecond | Telephone | VarXp | 183
GTX VarXpSecond | TelepSecond | Telephone | VarXp | 185

151

152 CONTROLLED EXPERIMENT: DATA AND SUPPORT MATERIAL

© 0 N O W N

W oW oW W W NN NNNNNRNNDNE B R e e e e e e
A XN R OO ®NO0 AR WNRO®©®NO O A WN R O

GTX VarXpSecond | TelepSecond | Telephone | VarXp | 157
GTX VarXpSecond | TelepSecond | Telephone | VarXp | 120
GTX VarXpFirst TelepFirst Telephone | VarXp | 139
GTX VarXpFirst TelepFirst Telephone | VarXp | 197
GTX VarXpFirst TelepFirst Telephone | VarXp | 123
GTX VarXpFirst TelepFirst Telephone | VarXp | 119
GTX VarXpFirst TelepFirst Telephone | VarXp | 180
GTX VarXpSecond | TelepSecond | Telephone | VarXp | 134
GTX VarXpFirst TelepFirst Telephone | VarXp | 241

Table B.1: The time measured for the participants in the evaluation

B.4 EVALUATION: R SCRIPT

Listing B.1: R script used in the evaluation of VarXplorer

library (dplyr)
library(sjstats)

#varXplorer experiment
#author: Larissa Rocha

###variables

eleViz <- dataCompleteGY>%filter (System=="Elevator"&Tool=="Varviz")
eleVax <- dataCompleteG’>%filter (System=="Elevator"&Tool=="VarXp")

telViz <- dataCompleteGY%>%filter (System=="Telephone"&Tool=="Varviz")
telVax <- dataCompleteGY>)filter (System=="Telephone"&Tool=="VarXp")

timeVarviz <-dataCompleteG%>%filter (Tool=="Varviz")
timeVarX <-dataCompleteGY%>%filter (Tool=="VarXp")
<- dataCompleteG%>/filter (OrderTool=="VarvizFirst")

varvizFirst

varvizSecond <- dataCompleteG¥%>)filter (OrderTool=="VarvizSecond")
varXFirst <- dataCompleteG¥%>)filter (OrderTool=="VarXpFirst")

varXSecond <- dataCompleteGY%>)filter (OrderTool=="VarXpSecond")

#standard deviation

sd(dataCompleteG$Time [1:12])
sd(dataCompleteG$Time [13:24])
sd(dataCompleteG$Time [25:36])
sd(dataCompleteG$Time [37:48])

#mean

mean (eleVax$Time)
mean (telVax$Time)
mean(eleViz$Time)
mean(telViz$Time)

mean (timeVarviz$Time)
mean (timeVarX$Time)

35
36

37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

94
95

B.4 EVALUATION: R SCRIPT

HH##---—— comparing Varvix x VarXplorer in general

boxplot (dataGroupoOrdem$Time ~ dataGroupoOrdem$Tool, col=c("gray"), ylab="Time
(seconds)", xlab="Tool_used")

HH##----- test to see if the order has influence

kruskal.test (dataGroupoOrdem$Time “dataGroupoOrdem$Group)

boxplot (dataGroupoOrdem$Time “dataGroupoOrdem$Group, ylab="Time,(seconds)",
xlab="Groups")

kruskal.test (dataCompleteG$Time "dataCompleteG$0OrderTool)

kruskal.test (dataCompleteG$Time “dataCompleteG$0rderSys)

HH##----- Shapiro-Wilk normality test
shapiro.test(timeVarviz$Time)
shapiro.test(timeVarX$Time)

#normal per subgroup

shapiro.test(dataCompleteG$Time [1:12])
shapiro.test(dataCompleteG$Time [13:24])
shapiro.test (dataCompleteG$Time [25:36])
shapiro.test(dataCompleteG$Time [37:48])

###----Bartlett test of homogeneity of variances
bartlett.test (dataCompleteG$Time "dataCompleteG$Tool)
bartlett.test (dataCompleteG$Time "dataCompleteG$System)

bartlett.test (dataCompleteG$Time "dataCompleteG$Group)

boxplot (dataCompleteG$Time “dataCompleteG$Group, col=c("gray"), ylab="Time, (seconds)"

xlab="System versus_ Tool")
bartlett.test (dataCompleteG$Time "dataCompleteG$Tool)
boxplot (dataCompleteG$Time " dataCompleteG$Tool)

###Variance homogeneity by order

bartlett.test (dataCompleteG$Time “dataCompleteG$0rderTool)
boxplot (dataCompleteG$Time “dataCompleteG$0rderTool)
bartlett.test (dataCompleteG$Time “dataCompleteG$0OrderSys)
boxplot (dataCompleteG$Time “"dataCompleteG$0rderSys)

#normal by order
shapiro.test(varvizFirst$Time)
shapiro.test(varvizSecond$Time)
shapiro.test(varXFirst$Time)
shapiro.test(varXSecond$Time)

##--- ANOVA test
#anov = aov(Time~ System+Tool+Group)
anov = aov(Time~System+Tool)

summary (anov)

shapiro.test(resid(anov))

bartlett.test (dataCompleteG$Time "dataCompleteG$Tool)
cohens_f (anov)

eta_sq(anov)

anova_stats (anov)

#TukeyHSD (anov)

##---testing the learning effect (order)

boxplot (dataCompleteG$Time "dataCompleteG$0OrderSys, ylab="Timeyingseconds",
xlab="Systems 0rder")

boxplot (dataCompleteG$Time “dataCompleteG$0rderTool, ylab="Timey in,seconds",
xlab="Tools_ 0Order")

anovl = aov(Time~0OrderTool)

153

96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

154 CONTROLLED EXPERIMENT: DATA AND SUPPORT MATERIAL

summary (anovi)

TukeyHSD (anovi)

shapiro.test(resid (anovl))

bartlett.test (dataCompleteG$Time “dataCompleteG$0rderTool)

anov2 = aov(Time~OrderSys)

summary (anov2)

TukeyHSD (anov2)

shapiro.test(resid(anov2))
bartlett.test(dataCompleteG$Time "dataCompleteG$0rderSys)

#----other analysis-----

#no-parametric inference/analysis
kruskal.test (Time~Group)
wilcox.test(Time Tool)
wilcox.test (Time~System)

###comparing per system
boxplot (eleViz$Time ,telViz$Time)
boxplot (eleVax$Time ,telVax$Time)

###comparing per tool
boxplot(eleViz$Time ,eleVax$Time)
boxplot (telViz$Time ,telVax$Time)

=W N =

ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Appendix

EXPLORATORY STUDY: DATA AND SUPPORT
MATERIAL

C.1 ALL SPECIFICATIONS CREATED DURING THE EXPLORATORY STUDY

version="1.0" encoding="UTF-8” standalone="no” 7>
<system name="RiSE_Event_SPL”>

<specification type="Allow”’><require from="Activity” to="RegistrationSpeakerActivity”> <var
name="int .ActivitySpeaker.idActivity” /> </require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Activity”’><var
name="int . ActivitySpeaker.idActivity” /> </require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Activity”’><var
name="int _ActivitySpeaker.idUser” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker’><var
name="int_ActivitySpeaker.idActivity” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker’><var
name="int _ActivitySpeaker.idUser” /></require></specification>

<specification type="Allow”><require from="Speaker” to="RegistrationSpeakerActivity”’><var
name="int _ActivitySpeaker.idUser” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker”’><var
name=" Speaker_e” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker”’><var
name=" Speaker_newSpeaker” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker”’><var
name=" Speaker_newSpeaker” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker”’><var
name="Speaker_newSpeaker” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker”’><var
name="Exception_e” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Speaker’><var
name="Exception_e” /></require></specification>

<specification type="Allow”><require from="Speaker” to="RegistrationSpeakerActivity”’><var
name=" Speaker._newSpeaker” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name=
usersSize” /></require></specification><

specification type="Allow”><require from="User” to="Speaker’><var name=" String.
Speaker . biography” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”’><var name=
User.idUser” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”’><var name=" String.
User.email” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name=" String.
User. filiation” /></require></specification>

<specification type="Allow”><require from="TUser” to="Speaker”><var name=" String_
User.nameUser” /></require></specification>

<specification type="Allow”><require from="TUser” to="Speaker”><var name=" String_
User.password” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name="User$TypeUser._
User.typeUser” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name="Speaker._
e” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name="Speaker._
newSpeaker” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name="Speaker.
newSpeaker” /></require></specification>

7int o

7int o

155

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

156

EXPLORATORY STUDY: DATA AND SUPPORT MATERIAL

<specification type="Allow”><require from="TUser” to="Speaker”><var name=" Exception.
e” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name=
usersSize” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="String.
Speaker . biography” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name=
User.idUser” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name=" String.
User.email” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name=" String
User. filiation” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name=" String_
User.nameUser” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="String._
User.password” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="User$TypeUser._
User.typeUser” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="Speaker._
e” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="Speaker._
e” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="Speaker._
newSpeaker” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="Speaker.
newSpeaker” /></require></specification>

<specification type="Allow”><require from="Speaker” to="User”><var name="Exception._
e” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="User”><var
name="Speaker._e” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="User”><var
name="Speaker_newSpeaker” /></require></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="User”><var
name="Exception_e” /></require></specification>

<specification type="Allow”><require from="TUser” to="RegistrationSpeakerActivity”’><var
name=" Speaker_newSpeaker” /></require></specification>

<specification type="Allow”><require from="User” to="Speaker”><var name=
ActivitySpeaker.idUser” /></require></specification>

<specification type="Allow”><require from="User” to=" RegistrationSpeakerActivity”><var
name="int _ActivitySpeaker.idUser” /></require></specification>

<specification type="Allow”><suppress from="Speaker” to="RegistrationSpeakerActivity”’><var
name="boolean_answer” /></suppress></specification>

<specification type="Allow”><require from="RegistrationSpeakerActivity” to="Activity”’><var
name="boolean_answer” /></require></specification>

<specification type="Allow”><suppress from="RegistrationSpeakerActivity” to="Activity”’><var
name="boolean._answer” /></suppress></specification>

<specification type="Allow”><require from="Speaker” to=" Activity”><var name="boolean -
answer” /></require></specification>

7int o

7int -

7int o

<specification type="Allow”><require from="Speaker” to="Activity”><var name="int _
ActivitySpeaker.idUser” /></require></specification>
<specification type="Allow”><require from="Speaker” to="Activity”><var name="int _

ActivitySpeaker.idActivity” /> </require> </specification>

<specification type="Allow”><suppress from="Speaker” to=" Activity”><var name="boolean._
answer” /></suppress></specification>

<specification type="Allow”><require from="Speaker” to="RegistrationSpeakerActivity”’><var
name="boolean_answer” /></require></specification>

<specification type="Allow”><require from="Activity” to="Speaker”><var name=
ActivitySpeaker.idActivity” /></require></specification>

<specification type="Allow”><require from="User” to="Reviewer”><var name="int.
usersSize” /></require></specification>

7int -

<specification type="Allow”><require from="User” to="Reviewer”><var name="int.
User.idUser” /></require></specification>
<specification type="Allow”><require from="Reviewer” to="User”><var name="int .

usersSize” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to=" Activity”><var name="int _
Submission.idActivity” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to=" Activity”><var name="int_
SubmissionUser.idActivity” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to=" Activity”><var name="int._
Submission.idActivity” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to=" Activity”><var name="int._

SubmissionUser.idActivity” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="User”><var name="int
idUsuario” /></require></specification>
<specification type="Allow”><require from="CompleteSubmission” to="User”’><var name="int .

SubmissionUser.idUser” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="User”><var name="int.
idUsuario” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="User”><var name=
SubmissionUser.idUser” /></require></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name=" SubmissionRepositoryNewBase
SubmissionRepositoryNewBase.instance” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name=" SubmissionRepository_submissionRepository” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name=" SubmissionControl_RiSEventFacade.submissions” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name="SubmissionUserRepositoryNewBase._
SubmissionUserRepositoryNewBase.instance” /></suppress></specification>

?int -

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

C.1 ALL SPECIFICATIONS CREATED DURING THE EXPLORATORY STUDY

157

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name=" SubmissionUserControl_RiSEventFacade.submissionUsers” /></suppress></specification>
<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

»

name="int _lastsub” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="1int_Test3.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name=" Submission_submission” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="int .Submission.idActivity” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="int .idUsuario” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

—

name="1int _SubmissionUser.idUser” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

»

name="int_SubmissionUser.idActivity” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name=" SubmissionRepositoryNewBase._
SubmissionRepositoryNewBase.instance” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="SubmissionRepository_submissionRepository” /></suppress></specification>
<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="SubmissionControl_RiSEventFacade.submissions” /></suppress></specification>
<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="SubmissionUserRepositoryNewBase._
SubmissionUserRepositoryNewBase.instance” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name=" SubmissionUserControl_RiSEventFacade.submissionUsers” /></suppress></specification>
<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="int .lastsub” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="int._Test3.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name=" Submission_submission” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

»

name="int_Submission.idActivity” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

»

name="int_.idUsuario” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

»

name="int _SubmissionUser.idUser” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="int._SubmissionUser.idActivity” /></suppress></specification>

<specification type="Allow”><require from="PartialSubmission” to="User”><var name="int .

idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="User”><var name=

SubmissionAuthor.idAuthor” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="User”><var name=

idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="User”><var name=

SubmissionAuthor.idAuthor” /></require></specification>

»

»

»

int -

int -

int_

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name=" SubmissionAuthorRepositoryNewBase._
SubmissionAuthorRepositoryNewBase.instance” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="SubmissionAuthorControl._
RiSEventFacade.submissionAuthors” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

»

name="int _.idCorrespondingAuthor” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="int._.SubmissionAuthor.idAuthor” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var

name="int _.SubmissionAuthor.idActivity” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name=" SubmissionAuthorRepositoryNewBase
SubmissionAuthorRepositoryNewBase.instance” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="SubmissionAuthorControl._
RiSEventFacade.submissionAuthors” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="int._idCorrespondingAuthor” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

name="1int _SubmissionAuthor.idAuthor” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

»

name="int _.SubmissionAuthor.idActivity” /></suppress></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Activity”><var name=

SubmissionAuthor.idActivity” /></require></specification>
<specification type="Allow”><require from="PartialSubmission” to=" Activity”’><var
SubmissionAuthor.idActivity” /></require></specification>

name=

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name=" SubmissionAuthorRepositoryNewBase
SubmissionAuthorRepositoryNewBase.instance” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name=" SubmissionAuthorControl._
RiSEventFacade.submissionAuthors” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

>

name="int._idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name="int _SubmissionAuthor.idAuthor” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

»

name="int _SubmissionAuthor.idActivity” /></require></specification>

»

7 int o

int .

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133
134

135

137

138

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

158

EXPLORATORY STUDY: DATA AND SUPPORT MATERIAL

<specification type="Allow”><require from="InsertAuthor” to="Activity”><var name="int._
SubmissionAuthor.idActivity” /></require></specification>

<specification type="Allow”><require from="User” to="InsertAuthor”><var name="int .
idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="User” to="InsertAuthor”><var name="int .
SubmissionAuthor.idAuthor” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="User”><var name="int .
idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="User”><var name="int .
SubmissionAuthor.idAuthor” /></require></specification>

<specification type="Allow”><require from="Activity” to="InsertAuthor”><var name=
SubmissionAuthor.idActivity” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="InsertAuthor”><var
name=" SubmissionAuthorRepositoryNewBase._
SubmissionAuthorRepositoryNewBase.instance” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="InsertAuthor”><var
name=" SubmissionAuthorControl._
RiSEventFacade.submissionAuthors” /></require></specification><specification
type="Allow”><require from="PartialSubmission” to="InsertAuthor”><var name="int._
idCorrespondingAuthor” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="InsertAuthor”><var
name="int _SubmissionAuthor.idAuthor” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="InsertAuthor”><var
name="int_SubmissionAuthor.idActivity” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name=" String.
User.email” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name="String -
User. filiation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name="String -
User.nameUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name=" String._
User.password” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name="User$TypeUser_
User.typeUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="User”><var name=" String .
Reviewer . knowledgeArea” /></require></specification>

<specification type="Allow”><require from="User” to="Reviewer”><var name="String._
User.email” /></require></specification>

<specification type="Allow”><require from="User” to="Reviewer”><var name="String._
User. filiation” /></require></specification>

<specification type="Allow”><require from="User” to="Reviewer”><var name=" String.
User.nameUser” /></require></specification>

<specification type="Allow”><require from="User” to="Reviewer”><var name=" String.
User.password” /></require></specification>

7int -

<specification type="Allow”><require from="User” to="Reviewer”><var name="User$TypeUser_
User.typeUser” /></require></specification><specification type="Allow”><require
from="User” to="Reviewer”><var name=" String.
Reviewer . knowledgeArea” /></require></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name="int _Test4.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var

”int .Review.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name="int _Review.round” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="1int _Test4.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="int _.Review.idSubmission” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="int -Review.round” /></suppress></specification>

name=

<specification type="Allow”><require from="PartialSubmission” to="Review”><var name="int _
Review.idSubmission” /></require></specification>
<specification type="Allow”><require from="PartialSubmission” to="Review”><var name="int

Review.round” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Review”><var name="int.
Review.idSubmission” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Review”><var name=
Review.round” /></require></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="Review._r” /></suppress></specification>

<specification type="Allow”><suppress from="CompleteSubmission” to="PartialSubmission”><var
name="1int _round” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name="Review.r” /></suppress></specification>

<specification type="Allow”><suppress from="PartialSubmission” to="CompleteSubmission”><var
name="int .round” /></suppress></specification>

<specification type="Allow”><require from="PartialSubmission”
r” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="Review”><var name=
round” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Review”><var name="Review._
r” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Review”><var name="int.
round” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Reviewer”><Ivar name=
round” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name=
usersSize” /></require></specification>

7int o

> to="Review”><var name="Review._

7 int -

7int o

?int o

156

157

158

159

160

161

162

164

165

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

191

192

193

194

195

196

197

199

C.1 ALL SPECIFICATIONS CREATED DURING THE EXPLORATORY STUDY

<specification type="Allow”><require from="Reviewer” to="Review”>JIvar name="

User.idUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name=" St
User.email” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name=" St
User. filiation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name=" St
User.nameUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name=" St
User.password” /></require></specification>

159

int

ring.
ring .
ring.

ring.

<specification type="Allow”><require from="Reviewer” to="Review”’><var name="User$TypeUser._

User.typeUser” /></require></specification>
<specification type="Allow”><require from="Reviewer” to="Review”><Ivar name=" St
Reviewer . knowledgeArea” /></require></specification>

»

ring .

<specification type="Allow”><require from="Reviewer” to="Review”><Ivar name="int._

Review.round” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><var name="Review.

r’/></require></specification>

<specification type="Allow”><require from="Reviewer” to="Review”><Ivar name="int._
round” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><var name="int
usersSize” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><var name="int .

User.idUser” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><var name=" St
User.email” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><var name=" St
User. filiation” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><Ivar name=" St
User.nameUser” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><Ivar name=" St
User.password” /></require></specification>

ring .
ring .
ring .

ring.

<specification type="Allow”><require from="Review” to="Reviewer”’><var name="User$TypeUser._

User.typeUser” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”><Ivar name=" St
Reviewer . knowledgeArea” /></require></specification>

<specification type="Allow”><require from="Review” to="Reviewer”’><Ivar name=
round” /></require></specification>

<specification type="Allow”><require from="PartialSubmission” to="Reviewer”’><v
round” /></require></specification>

»

ring.

int .

»

ar name="int .

<specification type="Allow”><require from="Activity” to="Registration”><var name="int .

Registration.idEvent” /></require></specification>

<specification type="Allow”><require from="Activity” to="Registration”><var name=

ActivityUser.idUser” /></require></specification>

7int .o

»

<specification type="Allow”><require from="Registration” to="Activity”><var name="int .

Registration.idEvent” /></require></specification>

»

<specification type="Allow”><require from="Registration” to="Activity”><var name="int .

ActivityUser.idUser” /></require></specification>

<specification type="Allow”><require from="RegistrationUserActivity” to="Activity”’><var

»

name="int _Registration.idEvent” /></require></specification>

<specification type="Allow”><require from="RegistrationUserActivity” to="Activity”><var

name="int_ActivityUser.idActivity” /></require></specification>

<specification type="Allow”><require from="RegistrationUserActivity” to="Activity”’><var

name="1int _ActivityUser.idUser” /></require></specification>

<specification type="Allow”><require from="Activity” to="User”><var name="int .
ActivityUser.idUser” /></require></specification>
<specification type="Allow”><require from="User” to=" Activity”><var name="int.

ActivityUser.idUser” /></require></specification>

<specification type="Allow”><require from="RegistrationUserActivity” to="User”><var name="int.

Registration.idUser” /></require></specification>

<specification type="Allow”><require from="RegistrationUserActivity” to="User”><var name=

ActivityUser.idUser” /></require></specification>
<specification type="Allow”><require from="Activity” to=" RegistrationUserActiv
name="int _Registration.idEvent” /></require></specification>
<specification type="Allow”><require from="Activity” to=" RegistrationUserActiv
name="int_ActivityUser.idActivity” /></require></specification>
<specification type="Allow”><require from="Activity” to=" RegistrationUserActiv

»

name="int _ActivityUser.idUser” /></require></specification>

7int .o
ity”><var
ity”><var

ity”><var

»

<specification type="Allow”><require from="User” to="RegistrationUserActivity”><var name="int._

Registration.idUser” /></require></specification

><specification type="Allow”><require from="User” to="RegistrationUserActivity”><var

name="1int _ActivityUser.idUser” /></require></specification>

<specification type="Allow”><require from="Registration” to="User”><var name="
Registration.idUser” /></require></specification>

<specification type="Allow”><require from="Registration” to="User”><var name="
ActivityUser.idUser” /></require></specification>

<specification type="Allow”><require from="User” to="Registration”><var name="
Registration.idUser” /></require></specification>

<specification type="Allow”><require from="User” to="Registration”><var name="
ActivityUser.idUser” /></require></specification>

int.

int .

int .

int -

<specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name="Database_RegistrationRepositoryNewBase.dataBase” /></require></specification>
<specification type="Allow”><require from="Registration” to=" RegistrationUserActivity”><var

»

name="int _Registration.idEvent” /></require></specification>

<specification type="Allow”><require from="Registration” to="RegistrationUserActivity”’><var

name="int _Registration.idUser” /></require></specification>

<specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var

name=" float _Registration.totalValue” /></require></specification>

<specification type="Allow”><require from="Registration” to="RegistrationUserActivity”’><var

»

name="int _ActivityUser.idUser” /></require></specification>

160 EXPLORATORY STUDY: DATA AND SUPPORT MATERIAL

200 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="Database_RegistrationRepositoryNewBase.dataBase” /></require></specification>

201 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="int _Registration.idEvent” /></require></specification>

202 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="int _Registration.idUser” /></require></specification>

203 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="float ~Registration.totalValue” /></require></specification>

204 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="int _ActivityUser.idUser” /></require></specification>

205 <specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name="Payment$ TypePayment_Payment.paymentType” /></require></specification>

206 <specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

207 <specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name="float _.Payment.value” /></require></specification>

208 <specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name=" String _Payment. barcode” /></require></specification>

209 <specification type="Allow”><require from="Registration” to="RegistrationUserActivity”><var
name=" String _Payment. date” /></require></specification>

210 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="Payment$TypePayment_Payment.paymentType” /></require></specification>

211 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

212 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name=" float _Payment.value” /></require></specification>

213 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name=" String -Payment. barcode” /></require></specification>

214 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name=" String -Payment.date” /></require></specification>

215 <specification type="Allow”><require from="RegistrationUserActivity” to="Registration”><var
name="Exception_e” /></require></specification>

216 <specification type="Allow”><require from="Payment” to=" Registration”><var name="Database.
PaymentRepositoryNewBase.dataBase” /></require></specification>

217 <specification type="Allow”><require from="Payment” to="Registration”><var
name="Payment$TypePayment_Payment.paymentType” /></require></specification>

218 <specification type="Allow”><require from="Payment” to="Registration”><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

219 <specification type="Allow”><require from="Payment” to="Registration”><var name=" float
Payment . value” /></require></specification>

220 <specification type="Allow”><require from="Payment” to=" Registration”><var name=” String.
Payment . barcode” /></require></specification>

221 <specification type="Allow”><require from="Payment” to=" Registration”><var name=" String.
Payment.date” /></require></specification>

222 <specification type="Allow”><require from="Payment” to=" Registration”><var name=" Exception._
e” /></require></specification>

223 <specification type="Allow”><require from="Registration” to="Payment”’><var name="Database.
PaymentRepositoryNewBase.dataBase” /></require></specification>

224 <specification type="Allow”><require from="Registration” to="Payment”’><var
name="Payment$ TypePayment_Payment.paymentType” /></require></specification>

225 <specification type="Allow”><require from="Registration” to="Payment”’><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

226 <specification type="Allow”><require from="Registration” to="Payment”><var name="float .
Payment . value” /></require></specification>

227 <specification type="Allow”><require from="Registration” to="Payment”’><var name=" String._
Payment . barcode” /></require></specification>

228 <specification type="Allow”><require from="Registration” to="Payment”><var name=" String.
Payment.date” /></require></specification>

229 <specification type="Allow”><require from="Registration” to="Payment”’><var name=" Exception.
e” /></require></specification>

230 <specification type="Allow”><require from="PaymentCash” to="Registration”/></specification>

231 <specification type="Allow”><require from="PaymentCash” to="Payment” /></specification>

232 <specification type="Allow”><require from="PaymentCash”
to="RegistrationUserActivity” /></specification>

233 <specification type="Allow”><require from="Payment” to="RegistrationUserActivity”><var
name="Payment$ TypePayment_Payment.paymentType” /></require></specification>

234 <specification type="Allow”><require from="Payment” to=" RegistrationUserActivity”><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

235 <specification type="Allow”><require from="Payment” to=" RegistrationUserActivity”><var
name="float .Payment.value” /></require></specification>

236 <specification type="Allow”><require from="Payment” to=" RegistrationUserActivity”><var
name=" String _Payment. barcode” /></require></specification>

237 <specification type="Allow”><require from="Payment” to="RegistrationUserActivity”><var
name=" String _Payment.date” /></require></specification>

238 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name="Payment$ TypePayment_Payment.paymentType” /></require></specification>

239 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name="Payment$StatusPayment_Payment.status” /></require></specification>

240 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name="float _Payment.value” /></require></specification>

241 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name=" String -Payment. barcode” /></require></specification>

242 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name=" String _Payment.date” /></require></specification>

243 <specification type="Allow”><require from="RegistrationUserActivity” to="Payment”’><var
name="Exception_e” /></require></specification>

244 <specification type="Allow”><require from="Review” to="Reviewer”><Ivar name="int._
Assignment .idReviwerUser” /></require></specification>

245 <specification type="Allow”><require from="Reviewer” to="Review”><var name="1int

Assignment .idReviwerUser” /></require></specification>

246

247

248

249

250

251

252

254

255

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

C.1 ALL SPECIFICATIONS CREATED DURING THE EXPLORATORY STUDY

<specification type="Allow”><require from="Reviewer” to="Review”><var name=" Exception.

el” /></require></specification>

<specification type="Allow”><require from="Assignment” to="CompleteSubmission”><var

Assignment .idReviewSubmission” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to=" Assignment”><var

Assignment .idReviewSubmission” /></require></specification><specification
type="Allow”><require from=" Assignment” to="Reviewer”><var name="int_
Assignment .idReviwerUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to=" Assignment”><var name=

Assignment .idReviwerUser” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="Assignment”><var name="Exception_

el” /></require></specification>

<specification type="Allow”><require from="Assignment” to="Review”><var name="
Assignment .idReview” /></require></specification>

<specification type="Allow”><require from=" Assignment” to="Review”><var name="
Assignment .idReviwerUser” /></require></specification>

<specification type="Allow”><require from="Review” to="Assignment”><var name="
Assignment .idReview” /></require></specification>

<specification type="Allow”><require from="Review” to="Assignment”><var name="
Assignment .idReviwerUser” /></require></specification>

<specification type="Allow”><require from="Review” to=" Assignment”><var name=" Exception_

el” /></require></specification>

<specification type="Forbid”><suppress from="Assignment” to="InsertAuthor”’><var

user” /></suppress></specification>

<specification type="Allow”><require from="User” to="CompleteSubmission”><var name=" User.

user” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name="Author_author” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="User”><var name=" User.

user” /></require></specification>

<specification type="Allow”><require from="User” to="InsertAuthor”><var name=" Exception_

e” /></require></specification>

<specification type="Allow”><require from="TUser” to="Reviewer”><var name="Exception._

e” /></require></specification>

»

int -

int .

int.

int.

int -

name="User .

161

int.

int.

<specification type="Allow”><require from="User” to="CompleteSubmission”><var name=" Exception.

e” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="Reviewer”><var

name="Exception_e” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name=" String_authorFiliation” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="InsertAuthor”><var

name="Exception_e” /></require></specification

><specification type="Allow”><require from="ConflictOfInterest” to="CompleteSubmission”><var

name="String_authorFiliation” /></require></specification>

<specification type="Allow”><require from="ConflictOfInterest” to="InsertAuthor”><var

name=" String_authorFiliation” /></require></specification>

<specification type="Allow”><require from=" ConflictOfInterest” to="InsertAuthor”><var

name=" String._reviewerFiliation” /></require></specification>

<specification type="Allow”><require from="ConflictOfInterest” to="InsertAuthor”><var

name="String._userFiliation” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to=" ConflictOfInterest”><var

name=" String_authorFiliation” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to=" ConflictOfInterest”><var

name="String._reviewerFiliation” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="ConflictOfInterest”><var

name=" String._userFiliation” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to=" ConflictOfInterest”’”><var

name="Exception_e” /></require></specification>

<specification type="Allow”><require from="User” to="ConflictOfInterest”><var name=" Exception.

e” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="Reviewer”><Ivar name=’

reviewerFiliation” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="Reviewer”><Ivar name=

userFiliation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="InsertAuthor”><var name=

reviewerFiliation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="InsertAuthor”><var name=’

userFiliation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to="InsertAuthor”><var name=

e” /></require></specification>

<specification type="Allow”><require from="InsertAuthor” to="CompleteSubmission”><var

name=" String_authorFiliation” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="ConflictOflnterest”><var

name=" String_authorFiliation” /></require></specification>

<specification type="Allow”><require from="CompleteSubmission” to="ConflictOfInterest”><var

name="Exception_e” /></require></specification>

<specification type="Allow”><require from="Reviewer” to=" ConflictOfInterest”><var

name="String._reviewerFiliation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to=" ConflictOfInterest”’”><var

name="String_userFiliation” /></require></specification>

<specification type="Allow”><require from="Reviewer” to=" ConflictOfInterest”><var

name=" Exception_e” /></require></specification>

<specification type="Allow”><require from="ConflictOfInterest” to="Reviewer”’><Ivar

name=" String._reviewerFiliation” /></require></specification>

<specification type="Allow”><require from=" ConflictOfInterest” to="Reviewer”’><Ivar

name=" String._userFiliation” /></require></specification>
</system>

"String -
”? String -
”? String -

String .

” Exception.

162 EXPLORATORY STUDY: DATA AND SUPPORT MATERIAL

C.2 TEST SUITE GRAPHS

T1 Analysis

Figure 1. Complete Graph

T2 Analysis

requires__—
—6)

requires.

Figure 3. Graph generated after fixing the bug

T3 Analysis
requires requires
qm 6]

requires

requires
(2)

0
\
\
\
\
\
\
\
\

Figure 8. The complete and reduced graphs are the
same to this test because none spec matched

\

AN

AN

Figure 3. After judge
the interactions
Figure 2. Graph generated after
fixing the bug

AcfivityTuto}ial

requires.——""_
D
suppr

ActifiityWorkghop
Figure 5. Reduced Graph used in the analysis

Organizet

RegistrationSpeakgrActivity

CompleteSubmission

Figure 7. After judge the interactions

Registra rActivity

Figure 9. After judge all interactions

T4 Analysis

a2
requiras” 1 requires -
AD3) i

_ot13)

i
-~ requires H
(12) B
Speaker |
@ @

requjres
reajresreauires D
| h -
'("‘(%'{ff “requires
requires (G
2 requires
requires AN
[}

Registra rAc(ivi(y

Figure 12. After judge all
interactions

Figure 11. Reduced Graph used in the

analysis

Registrat(onSpeakyrActivity

Figure 10. Complete Graph

T5 Analysis

requires
(14)
requires_

suppresses
[§8)

requires—"
)

—

e

requiressuppresses
@ requires
{6
- requires requires o
" requires ~equird® equigseet
. Suppresses(14) G 5 5]
[t} —
requites suppresses
) &) .
requires requirds, 7equS requires
K a2 ", oy
8] *, o
suppresses
a

suppresses
i)

i requires

“)

Figure 13. Complete Graph

Figure 14. Reduced Graph used in the analysis
cuppresses
1
Regis[ra(AEthv'

requires
1y

. requnges""
*~requires 4D
60 -
. Speaker
fﬂw‘ul;is suppresses
suppresses ', requires
[

RegistratjonSpeakgrActivity
@

Figure 16. After judge all interactions

Figure 15. Graph generated after fixing the bug

T6 Analysis

requires
())
requires. ---~ -

Reviewer
Reviewer|€”

Figure 18. After judge all
Figure 17. The complete and reduced graphs are the same interactions
to this test because none spec matched

T7 Analysis

e . requirés ;‘eqmres

requires requires %)
2 @ @
© . m . U suppresses Pa pion
U suppresses e U N
reduires required” redujres
@, e e requis
@ req(‘ll‘;es Q
requires
@

Figure 19. Complete Graph Figure 20. Reduced Graph used in the
analysis

requires’ “requires
2),
\ i Comp ssion
(12)
suppresses
. a2
reagires requirés
@, 2)

Figure 22. After judge all interactions

Figure 21. Graph generated after fixing the bug

T8 Analysis

suppresses “reguires
; requres | suppreses g o
/ i - supprésses.. i .
: § an e, ; P
: i redires
requjres |) .
1 ‘ :
; A~ T Ty it s
i e . | requires
requifes L reairegued : i
12 | Rl requires . requires I
! - - requires s D
(1.

requires
@ redyjres
@,
requised ~
A2

{6

@ requires
@

Figure 23. Complete Graph
Figure 24. Reduced Graph used in the analysis

Comd ssion
Reviewen
Pan.on
"

Figure 25. After judge all
interactions

T9 Analysis

suppresses
19)

requires, .-+~
@

- requires
[EN

&

Suppresses
a9

--.._requires
T

“requires
).

reduires
),

requies
o)

\ requires
\ reauiges

Figure 26. Complete Graph

T10 Analysis

requires.-+"
45T

~-.._ requires
G

suppresses
(21)

requires””
L)

Suppresses
1)

---- requires requires .-~
@

o eetfiGuires
o 5)

equies
 reaiedd)

Figure 29. Complete Graph

A2

Com

Figure 28. After judge all interactions

R reqiyires requires
reqtl i (11)
/(ig{&fulres (3D

.

Figure 31. After judge the interactions

T11 Analysis

requires
@
requirgs:
s

“ ~ Aquires dquires requires .H
. req;g‘)res (5) 2) 2 Registr Activity
) '

. Feq_uires

requiresrequ"ires .
)@ [:N§
requires \\
(&)} h
requires Figure 33. After judge the interactions
6)

Registrti
requires

Figure 32. The complete and reduced graphs are the
same to this test because none spec matched

T12 Analysis

redyires
equires(b)
© N

vequires
®),

requires

Registr

requifssires
@ @

HEC
I

Figure 35. Reduced Graph used in the analysis

reiures
&,

. Complete Graph

Figure 34
REQ””Q’T}{M requires nmh
a
K
Re gn
\ \'e requires
\, requiress) 4
Y [CN P h

Registrctivity
Figure 37. After judge the

interactions

(5)

requ'irenuires
»

Figure 36. Graph generated after fixing the bug

T13 Analysis

X requires

requires requires N

requires S “\\ (6] (1) reg uirfé”s réquires (1)
a . @ kY

req”"‘els ré@uires ,lr'z)
42 o s

requires

...redal
T
requirekediires requ;/é; requires
< &6
Figure 40. After judge the
interactions
regires

Figure 39. Reduced Graph used in
Figure 38. Complete Graph the analysis

T14 Analysis

e :VEQMHES
requires- .
e w. requires
p),

requirgs”
Py

requires

sufresses |
[ertautnpr

“requires
requlegs
@

suppresses

|
|

requirs
o ﬁq{l}\res

)

requifes requires
%] @

requires
3)

|
|
|
!
|
|
I
1

Suppresses

Figure 41. Complete Graph Figure 42. Reduced Graph used in the analysis

suppresses

uppresses

('Il)
; Figure 44. After judge the interactions

Figure 43. Graph generated after fixing the bug

T15 Analysis

22y, requires
vequpss

requires
m

requires~"
s

=)

A" requires
rearesa)

requires < @

ol
o .
- qw/: requires %
reaires o} dures 3 reagires .
a @ m

requires

requires
@--...

Figure 45. Complete Graph

©r @
Figure 47. After judge the
interactions

requires
(2)
equires

S

% requires
reauifésy
a @

tequirss™”
3)

requires
reaares =" Pequires A
), o

r ©

Figure 46. Reduced Graph used in the analysis

This volume has been typeset in KTEXwith the UFBAThesis class (jwww.dcc.ufba.br/ flach/
ufbathesis;). For details about this document, click here.

www.dcc.ufba.br/~flach/ufbathesis
www.dcc.ufba.br/~flach/ufbathesis

	List of Figures
	List of Tables
	List of Acronyms
	I Overview
	Chapter 1—Introduction
	Motivation
	Objectives
	Presenting the state-of-the-art on feature interactions
	Supporting developers on the detection of suspicious feature interactions with VarXplorer

	Research Questions
	Research Design
	Contributions
	Out of Scope
	Organization of the Thesis
	II Background
	Chapter 2—Main Concepts and Foundations
	Software Product Lines (SPL)
	Feature-oriented Software Development (FOSD)
	Feature Interaction
	Feature interaction in SPL engineering
	Classification

	Chapter Summary
	Chapter 3—Systematic Mapping Study
	Mapping Study Process
	Research Questions
	Search Strategy
	Update

	Results
	Classification Scheme
	Feature Interaction Solutions
	Early Detection.
	Source Code Detection (Dsc).
	Early Resolution (Re).
	Source Code Resolution (Rsc).
	Early Analysis (Ae) and Source Code Analysis (Asc).

	Software lifecycle
	Artifacts.

	Feature interaction types
	Domains
	Empirical assessment methods

	Discussion
	Feature interaction solutions
	Tools and validation
	Domains

	Threats to validity
	Addressed gap and directions for further research
	Chapter Summary
	III A dynamic analysis approach with VarXplorer
	Chapter 4—On the Detection of Feature Interactions
	Why should we detect feature interactions?
	Running example: WordPress
	Feature-based specifications and Global specifications
	Strategies to detect interactions
	Variational execution
	VarexJ
	Chapter Summary

	Chapter 5—VarXplorer
	Iterative analysis of feature interactions: Overview
	Interaction detection
	Pairwise Detection
	Relationships Analysis

	Interaction specification language
	User Inspection
	Plug-in implementation
	Chapter Summary

	IV Empirical studies
	Chapter 6—Controlled Experiment: Understanding Feature Interactions with the Graph
	Experimental Design
	Research Questions (RQs)
	Experiment Overview
	Pilot Study
	Participants
	Experimental Material and Tasks
	Design
	Procedure and Execution
	Data Analysis

	Results and Discussion
	RQ1: Does VarXplorer improve the performance of identifying suspicious interactions compared to Varviz?
	RQ2: How does the interaction graph presented by VarXplorer help understand the suspicious interactions in a program?

	Threats to Validity
	Related Work
	Chapter Summary

	Chapter 7—Exploratory study: an analysis on VarXplorer iterations
	Research Question (RQ)
	Subject System
	Features

	Experimental Study Design
	Study overview
	Design
	Procedure

	Results
	Analysis of Order Influence

	Lessons Learned
	Threats to Validity
	Chapter Summary

	V Conclusions
	Chapter 8—Concluding Remarks and Future Work
	Thesis Contributions
	Limitations and Directions for Future Work
	Potential Future Work for the Approach
	Other Directions for Future Work from the Systematic Mapping

	Appendix A—Systematic mapping: support material
	Summary of Studies
	List of the newest studies, collected after the update
	Appendix B—Controlled Experiment: data and support material
	Online pre-survey (background form)
	Evaluation: Instructions for participants
	Evaluation: The time measured for the participants
	Evaluation: R Script
	Appendix C—Exploratory Study: data and support material
	All specifications created during the exploratory study
	Test suite graphs

